"It gets easier… Every day it gets a little easier… But you gotta
do it every day - that’s the hard part. But it does get
easier" BJH - S2 finale
Scientific publications
Articles in refereed journals
"Tiefe Brunnen muss man graben wenn man klares Wasser will
Rosenrot oh Rosenrot Tiefe Wasser sind nicht still"
Rosenrot - Rammstein
On Statistical Journals
Varghese, A., Santos-Fernandez E., Denti, F., Mira, A.,
and Mergensen, K. A global perspective on the intrinsic dimensionality of COVID-19
data Scientific Reports, 2023
Denti, F., Peluso, S., Guindani, M., and Mira, A. Multiple hypothesis screening using mixtures of non-local
distributions Statistics in Medicine, 2023
Denti, F. intRinsic: an R package for the package for model-based estimation
of the intrinsic dimension of a dataset Journal of Statistical Software, 2023
Denti, F., Azevedo, R., Lo, C., Wheeler, D. G., Gandhi,
S.P.,Guindani, M., and Shahbaba, B. A Horseshoe mixture model for Bayesian screening with an application
to light sheet fluorescence microscopy in brain imaging Annals of Applied Statistics, 2023 - In Press
Denti, F., Doimo, D., Laio, A., and Mira, A. Gride: a novel likelihood-based intrinsic dimension
estimator Scientific Reports, 2022
Santos-Fernandez, E., Denti, F., Mengersen, K., and
Mira A. The role of intrinsic dimension in high-resolution player tracking
data – Insights in basketball Annals of Applied Statistics, 2021
Denti, F., Camerlenghi, F., Guindani, M., and Mira,
A. A Common Atom Model for the Bayesian Nonparametric Analysis of
Nested Data Journal of the American Statistical Association, 2021
Denti, F., Cappozzo, A., and Greselin, F. A Two-Stage Bayesian Semiparametric Model for Novelty Detection with
Robust Prior Information Statistics and Computing, 2021
Allegra, M., Facco, E. , Denti, F., Laio, A., and Mira,
A. Data segmentation based on the local intrinsic dimension Scientific Reports, 2020
Denti, F., Guindani, M., Leisen, F., Lioji, A., and
Vannucci, M. Two-group Poisson-Dirichlet mixtures for multiple testing Biometrics, 2020
Collaborative Papers
Migliavada, R., Ricci, F. Z., Denti, F., Haghverdian,
D., and Torri, L. Is purchasing of vegetable dishes affected by organic or local
labels? Empirical evidence from a university canteen Appetite, 2022
Petazzoni, M., De Giacinto, E., Troiano, D., Denti, F.,
and Buiatti, M. Computed Tomographic Trochlear Depth Measurement in Normal
Dogs Journal of Veterinary and Comparative Orthopaedics and
Traumatology, 2018
D’Angelo, L., and Denti, F. Bayesian analysis of Amazon’s best-selling books via finite nested
mixture models (pp. 1117-1120)
Di Noia, A., Denti, F., and Mira, A. A tool for assessing weak identifiability of statistical
models, (pp. 1230-1234)
Denti, F., Di Noia, A., and Mira, A. Bayesian nonparametric estimation of heterogeneous intrinsic
dimension via product partition models, (pp. 316-321)
Capitoli, G., Colombara, S., Cotroneo, A., De Caro, F., Morandi, R.,
Schembri, C., Zapiola, A.G., and Denti, F. Detecting latent spatial patterns in mass spectrometry brain imaging
data via Bayesian mixtures, (pp. 1127-1132)
in F.M. Chelli, M. Ciommi, S. Ingrassia, F. Mariani, M.C. Recchioni
(a cura di) Book of Short Papers SEAS IN 2023, Pearson.
Denti, F., D’Angelo, L., and Guindani, M. Bayesian approaches for capturing the heterogeneity of neuroimaging
experiments, (pp. 17-29)
Denti, F., Camerlenghi, F., Guindani, M., and Mira,
A. Clustering artists based on the energy distributions of their songs
on Spotify via the Common Atoms Model, (pp. 121-126)
Denti, F. and Mira, A. A tool to validate the assumptions on ratios of nearest neighbor
distances: the Consecutive Ratio Paths, (pp. 1233-1238)
in A. Balzanella, M. Bini, C. Cavicchia, and R. Verde (a cura di),
Book of Short Papers SIS 2022, Pearson.
Denti, F., Cappozzo, A., and Greselin, F. Outlier and novelty detection for Functional data: a semiparametric
Bayesian approach
in Book of Short Papers of the 5th international workshop on Models
and Learning for Clustering and Classification, (Ingrassia A.,
Punzo A., Rocci R., editors) (pp. 33-38). Ledizioni.
Denti, F., Cappozzo, A., and Greselin, F. Bayesian nonparametric adaptive classification with robust prior
information
in A. Pollice, N. Salvati, & F. Schirripa Spagnolo (a cura di),
Book of Short Papers SIS 2020 (pp. 655-660). Pearson.
Caponera, A., Denti, F., Rigon, T., Sottosanti, A., and
Gelfand, A. Hierarchical Spatio-Temporal Modeling of Resting State
fMRI Data
in Studies in Neural Data Science (Canale, A., Durante, D.,
Paci, L., Scarpa, B., editors), 2018.
Submitted manuscripts
"Whoa, you know to keep your hopes up high And your head down
low" All I Want - A Day to Remember
D’Angelo, L. and Denti, F. A finite-infinite shared atoms nested model for the Bayesian
nonparametric analysis of large data sets - Submitted
Benedetti, L., Boniardi, E., Chiani, L., Ghirri, J.,
Mastropietro, M., Cappozzo,A., and Denti, F. Variational Inference for Semiparametric Bayesian Novelty Detection
in Large Datasets - Submitted