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The simultaneous testing of multiple hypotheses is common to the anal-
ysis of high-dimensional data sets. The two-group model, first proposed
in [Efron| [2004], identifies significant comparisons by allocating observations



to a mixture of an empirical null and an alternative distribution. In the
Bayesian nonparametrics literature, many approaches have suggested using
mixtures of Dirichlet Processes in the two-group model framework. Here, we
investigate employing mixtures of two-parameter Poisson Dirichlet Processes
(2PPD) instead, and show how they provide a more flexible and effective
tool for large-scale hypothesis testing. Our model further employs non-local
prior densities to allow separation between the two mixture components. We
obtain a closed form expression for the exchangeable partition probability
function of the two-group model, which leads to a straightforward MCMC
implementation. We compare the performance of our method for large-scale
inference in a simulation study and illustrate its use on both a prostate can-
cer dataset and a case-control microbiome study of the gastrointestinal tracts
in children from underdeveloped countries who have been recently diagnosed
with moderate to severe diarrhea.

Keywords: B ayesian nonparametrics, Microbiome analysis, Multiple testing, Poisson—Dirichlet
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1 Introduction

The availability of high-dimensional data in domains as diverse as genomics, imaging, and
astronomy, has brought the necessity to screen a large number of hypotheses simultane-
ously. Here, we focus on the two-group modeling framework [Efron, 2004]. To illustrate,
we assume that the observations are suitably defined difference scores z;, i = 1,...,n
over a large number of distinct hypotheses. The two-group model assumes that the z;’s
are drawn either from a null (fp) or a non-null (f;) distribution, i.e., each score is drawn
from a mixture,

zi~ [ =(1=p)fo+pfi, (1)

for some weight p € (0,1), and some probability (density) functions fy and f;. The null
component is typically assumed standard normal; however, the true null distribution
may differ from the theoretical null, e.g., due to limited sample size or unaccounted
correlation. Thus, Efron proposes the estimation of an “empirical null” distribution to
adequately capture the range of parameter values coherent with the null hypothesis and
accordingly evaluate each testing decision.

In Bayesian nonparametrics, the Dirichlet process (DP) has been extensively used to
provide flexible estimates of fy, or fi, or both, as well as for clustering the z;’s into com-
mon “expression” levels [Do et al., 2005, [Dahl and Newton, 2007, |Kim et al., 2009, Kottas
and Fellingham| 2012]. |Martin and Tokdar [2012] develop a flexible hierarchical non-
parametric approach where f is assigned a Normal distribution with unknown mean and
variance, whereas f is a location mixture of normals. One appealing feature of the two-
group model is that the resulting inference is immediately amenable to interpretation in
a decision theoretic framework. For example, Efron|[2004] describes a local version of the



false discovery rate (local fdr), which represents the posterior probability that a differ-
ence score z; is generated according to the null hypothesis, fdr(z;) = (1—p) fo(z:)/f(z).
The selection of interesting scores is conducted by flagging all z;’s such that fdr(z;) < «,
€ (0,1), allowing control of the Benjamini-Hochberg FDR |[Benjamini and Hochberg;,
1995] at level a. More generally, the decision problem could minimize loss functions
that compound expected false positive and false negative decisions. The optimal deci-
sion would then lead to thresholding the posterior probability of the alternative [e.g.,
see Muller et al., 2006].
In this manuscript, we investigate the use of a mixture prior of two—parameter Poisson—
Dirichlet (2PPD) processes in lieu of the commonly used DPs. The 2PPD process, also
known as the Pitman-Yor process, is a generalization of the DP and is characterized by
two parameters: a “concentration” parameter # (analogous to the single parameter of the
DP), and a “discount” parameter o. The additional parameter allows for more flexible
clustering behavior than the DP and can be used to tune the reinforcement mechanism
of large clusters [Lijoi et al., 2007]. We show how the proper choice of o can be used to
model the empirical null distribution fp and the uncertainty related to the non-null dis-
tribution in the two-group model, leading to improved testing procedures. Our modeling
framework further employs non-local prior densities for the base measure of the random
probability measures under the alternative hypothesis to allow better separation between
the two mixture components. We derive the expression of the exchangeable partition
probability function (EPPF), induced by the proposed two-group 2PPD mixture process
and observe that, conditional on the assignment of the observations to the null or the
alternative hypothesis, the respective random partitions are independent. This property
conveniently facilitates posterior inference obtained via MCMC algorithms, which take
into account the conditional independence of the partitions. By means of a simulation
study, we discuss the performance of our method with respect to the commonly used
mixture of DPs and existing state-of-the-art approaches for large-scale multiple compar-
ison problems. We also illustrate the use of the proposed 2PPD processes mixture model
on two publicly available datasets: a well-known Prostate cancer dataset [Singh et al.,
2002| and one collected from a recent microbiome study [Pop et al., 2014]. In the latter
case, the aim was to characterize the microbial composition of the gastrointestinal tracts
of children from underdeveloped countries who have been diagnosed with moderate to
severe diarrhea. Our study suggests that mixture of DPs should be used with some
caution in large scale multiple-testing, and that the use of 2PPD processes could lead to
improved operating characteristics.

2 A review of the 2PPD process

In this Section we provide an overview of the 2PPD process with particular regard to
its use for density estimation and its clustering properties. Let Z1,..., Z, be a sample
of n data measurements (e.g. raw observations or summary statistics), drawn from a
sequence of exchangeable random elements 71, Zs, ..., taking value in a complete and
separable metric space Z endowed with its Borel og-algebra 2. By virtue of the de Finetti



representation theorem,

1=1,...,n,

o (2)
P~ Q,

for any n > 1, and for p, a random probability measure, with distribution ¢ defined on
the space Z(Z) of probability measures on Z. In a Bayesian framework, @ represents
the prior distribution and the model is said to be parametric whenever Q degenerates on
a finite dimensional subspace of &?(Z); otherwise, the model is denoted as nonparametric.

Here, we consider the 2PPD process for the random probability measure p, which
can be represented almost surely as an infinite mixture, i.e., p = > ;o Wy dy,, where
0. denotes the point mass at ¢, the wy’s are random weights obtained as w1 = V; and
Wy, = Vi H;:ll (1-Vj), k > 2 with V; ind Beta(l — 0,0 + jo), j > 1 [stick-breaking con-
struction; Pitman) [1995], for some o € [0,1) and § > —o. The Y}’s are random locations
in Z, independent of the weights wy’s, and assumed as random draws from a non-atomic
base measure P*, i.e., Y} i P*, k > 1, which represents the prior expected value of the
random distribution p, i.e., E[p(A)] = P*(A) for any A € 2. We should note that the
2PPD process is also well defined for 0 < 0 and 0 = r|o|, with r being an integer; how-
ever, in such case the process reduces to the parametric Fisher model [Ghosal and van der
Vaart, 2017]. Hereafter, we will use Z; | p o p, with p = 2PPD(c,0,P*), i = 1,...,n
to indicate a sample from a 2PPD with parameters o and 0, and base measure P*. If
Z1,...,2y, is a realization from an exchangeable sequence driven by a 2PPD process,
there is a positive probability of ties, i.e., P[Z; = Z;] > 0 for any i # j. This clustering
property often motivates the use of the 2PPD process in statistical applications, e.g. to
model data from heterogeneous populations.

The clustering behavior of the 2PPD process can also be investigated by consider-
ing the exchangeable partition probability function (EPPF), which characterizes the
probability that Z1,..., Z, are partitioned into K distinct clusters with respective sizes

K19+
ni,...,ng. For the 2PPD process, such probability is H%) (n1,...,ng) = W HK

0)n;—1 for any choice of positive integers ni,...,nx such that Zfil n; = n, with
K e{l,...,n}and (a); =T'(a+¢)/I'(a), for any non-negative integer q. The expression
highlights how the values of the parameters ¢ and 8 affect the clustering structure in-
duced by the 2PPD process. It is well-known that if K, denotes the number of distinct
values recorded in a sample Z1, ..., Z, of an exchangeable sequence drawn according to
a 2PPD(0,0) process, then K, /n” — S;9 as n — oo (almost surely) for some positive
random variable S,y when o € (0, 1)[see Theorem 3.8 in |Pitman, 2002]. When o = 0,
we recover the clustering behavior of the Dirichlet process, obtaining K, /logn — 6
as n — oo (almost surely). Hence, the larger o is, the larger the number of clusters.
Moreover, o controls the reinforcement of the partition, i.e., the ability of big clusters
to attract even more observations, as highlighted by the predictive distribution of the

J=1

(1-



2PPD process,

K
0+oK, N ni—o

— 1 77N p* I 5. (A
0+n—1 +j:10—|—n—1 z;(A),

PlZ1€A| Zy,..., 2]
where the probability that a new observation is assigned to an existing cluster, and
assumes value Z]’f‘, j=1,...,K,, is proportional to n; — 0. Therefore, values of o close
to 1 favor the formation of a large number of clusters, most of which are singletons [Lijoi
et al., 2007].

Finally, we consider the variability of realizations from a 2PPD process around the

base measure P*. The variance of the process is Var[p(A)] = é‘T‘{ P*(A)[1 — P*(A)],
for any A € & and j = 0,1. Large values of o correspond to random probability
measures which are more concentrated around the base measure P*. Therefore, one
should expect that the empirical distribution function of any sample Z1,..., Z, drawn
from a 2PPD process with high values of o, Fy,(b) = p(oc0,b] = >, Wi oz (00, b], would
be characterized by a large number of weights wy, of similar size. In the next Sections
we will exploit these properties to guide the use of the 2PPD process in the two-group

model for multiple testing.

3 Methods
3.1 A two-group 2PPD model

The different clustering behavior that the 2PPD process exhibits as a function of ¢ can
be exploited for distinguishing between the null and alternative distributions in the two-
group model. More precisely, we first rewrite model as the two—component mixture,

p=(1—p)po+ pp1, (3)

where p; ~ 2PPD(aj,6j,PJ?") represents the unknown distribution under the null and
the alternative hypotheses, for j = 0 and j = 1, respectively. Similarly as in , the
mixture weight p is a random variable independent of the p;’s and takes values in [0, 1].
We further introduce an auxiliary binary random variable v;, ¢ = 1,...,n, such that
Zi ~po if v, =0 and Z; ~ py if 4, = 1. Thus, conditionally on the v/s, we can rewrite

@)-@) as

Zilv ™y, i=1,...n,
vilp id Bernoulli(p), (4)
By ~ 2PPD(0y,,0,, P,

with pp and p; independent, and assuming a Beta(a, b) distribution on p. The hyperpa-
rameters a and b influence the proportion of discoveries and can be tuned according to
the problem at hand. In genomic studies, one may want to enforce sparsity of discoveries,

with prior expected proportions E [p] = 47 between 1% and 10% of the total number



of hypotheses. A lower value of E [p] typically results in lower posterior probabilities
of the alternative, although the relative ranking of the posterior probabilities is overall
preserved.

We exploit the properties of the 2PPD process discussed in Section [2| and propose to
specify the hyperparameters of the null and non-null random probability measures in ({4
as follows. In accordance with Efron’s idea that the empirical null distribution should
capture only small departures from the theoretical null, we let pg concentrate around the
theoretical null. Furthermore, we assume that there’s no good model a priori for the
non-null distribution. Therefore, p; is allowed to vary more freely on the space of the
alternative distributions. Under the null distribution, the process should encourage the
creation of a large number of clusters each composed by few observations, so that the
empirical distribution well approximates the theoretical null. For the non-null distribu-
tion, we should expect a more uneven distribution of the realizations. Based on those
considerations, we propose to set og > o1. We will discuss how such a choice might help
discriminating between the null and the alternative distribution in the multi-comparison
problem.

We conclude this Section by considering the joint partition structure induced by model

for asample Z3,...,Z, | p i p. Let Hg?)j (n1,...,nx) denote the EPPF of process p;,
7 =0,1, that is the probability that n observations are assigned to K different clusters
of sizes (n1,...,ng). For notational simplicity, we assume that H%ll,j (n1,...nK,0) =
Hg?’)j(nl, ...,nk), for any 7 = 0,1 and ni,...,nx > 1 such that Zfil n; = n. Then the
following result provides the EPPF of the mixture of 2PPD processes as below:

PROPOSITION 1. The EPPF associated to the mixture of 2PPD processes in 1S grven

M) = e 30 (@B

i€ Xjfﬂ(:l{(],nj}

0 (i, i) I (g — i, .o — i) (5)
where © = (i1,...,iK), |#| =41+ +ix, Ko = card{j : i =n;} and K; = K — Kq. If
i, = ny or i, = 0Vk, we assume Hg?)(il, i) =1

See Web Appendix B for a proof. Direct use of is far from trivial. Nonetheless, the
expression lends itself to an interesting interpretation: conditional on the assignment of
the clusters to either pg or pi, the respective random partitions are still independent.

This remark is useful for devising a suitable computational algorithm for posterior in-
ference.

3.2 Bayesian hierarchical two-group mixture model

In many applications, the discreteness of the realizations of the 2PPD process may be
considered inadequate. Thus, in lieu of , it is often common to assume for a sample



Z1,...,Zy a hierarchical mixture model with continuous components, i.e.

2055, with p=(1—p) / ko(Z:,9) fo(dd) + p / k1(Z09) pu(d9),  (6)

that is the two-group model is characterized by a null and non-null distributions which
are each defined as a 2PPD process mixture. Here, f5(Z;) is the random density induced
by the random probability measure p, while k; : Zx© — R, j = 0,1 are general kernels
such that for ¥ € © and some o finite measure A on (Z, Z°) one has [, k;j(x,9) AM(dz) = 1,
7 = 0,1. For our purposes, it is convenient to set Z = R and let A\ coincide with the
Lebesgue measure on R so that the previous model defines a prior on the space of
density functions on R. By conditioning on the auxiliary group indicator variables ~;,
i=1,...,n, we can rewrite model @ as a hierarchical Bayes two-group 2PPD process
maxture,

Zi| 95y N ke (Zi 19, i=1,....n
9ilvp By
il p S Bernoulli(p), (7)
p ~ Beta(a,b)
Py~ 2PPD(0y, 6y, P),

where 9; may indicate either a scalar or a vector parameter. In general, ko(-) and
k1(-) could be different. Here, we assume k., (-) = k+,(-) = k(-) to be a Normal kernel
and set ¥; = (,ul-,Tl-Z). For notational simplicity, in we have omitted additional
hyperparameters which may feature in the kernel function k(-) but are not relevant for
the decision problem and thus are assigned separate priors.

We conclude the specification of the two-group model by discussing the choice of
the base measures Fj and P. On the one hand, we achieve flexible estimation of the
so-called “empirical null” distribution by setting Py (,u, 72) =7 (pu)xm (72) =N(0,1) x
IG (ag, by) . where the parameters of the IG on 72 are chosen so to allow relatively small
deviations from the theoretical null distribution. For example, by assuming ag = 5,
bo = 0.2, the induced marginal distribution on Z; has only slightly fatter tails than the
standard normal.

Moreover, Py and P; should not have significantly overlapping supports, i.e. they should
assign high probability to regions of the parameter space that are consistent with the
null and the alternative hypotheses, respectively. In the Bayesian multiple hypotheses
testing framework, this requirement has sometimes been advocated to ensure enough
separation between the null and the alternative models. Thus, we first model P} as
a symmetric bimodal mixture of Normal-Inverse Gamma (NIG) distributions, as P} =
%NIG(—\ml\,kl,al,Bl) + %NIG(\ml\,kl,al,Bl), with my; € R, and ki,0q,81 € RT.

Marginally,
1 B1 b1
7 (pa|ma) = B [\/:ltzal — |[m| \/;tml + [ma]

2




We further achieve separation in the multiple hypotheses testing problem by modeling
the location parameter m; with a non-local prior (NLP), i.e. a prior that assigns vanish-
ing density to small neighborhoods of the null hypothesis [Johnson and Rossell, 2010].
Several types of NLP have been proposed in the literature. See, for instance, [Rossell
and Telescal [2017]. Here, we adopt an r-th moment (MOM) prior for my, with

m%’f‘ 6—m%/252

& Vork? '’

where ¢ is the normalizing constant, and we write m; ~ NLPyonm (0, m2,r). Specific
hyper-parameter specifications will be detailed in Section [l Here, we only note that
the non-local prior specification in P;* should provide enough separation from the origin
to ensure good estimation of the posterior probability of the alternative. Finally, the
other parameters of the 2PPD processes are set such that 6y = 61 and o9 > o1. In
general, 0y and 6; are chosen relatively small, in order to enforce coarser clustering
structures, especially under the alternative hypothesis. Typically, in Dirichlet-Process
two-groups models, 6y = 0; = 1 [see, e.g. |Do et al., 2005]. From the discussion at the
end of Section [2] it follows that realizations of the 2PPD null process are expected to
be more concentrated around the base measure. In the next Sections we will investigate
the effect of different choices for the parameter values of the 2PPD processes for the
multiple comparison problem.

(8)

mvom (ma; 0, k%, 1) =

3.3 Posterior inference

Posterior inference for model or relies on Markov Chain Monte Carlo techniques
since the posterior distributions are not available in closed form. Our primary interest
is in the group indicators ~;’s, which uniquely identify the random probability measure
from which the data Z;’s were generated, and, correspondingly, the probability of group
membership, p. For the sampling of the ~;’s, we exploit the independence of the random
partitions implied by the EPPF of the proposed mixture of 2PPD processes. More
specifically, if Z1,..., Z, are a random sample from and P}, j = 0,1 are non-atomic
base measures with common support, then P[Z; = Z; | v; # ;] = 0 for i # j. Thus, all
the Z;’s in a cluster are generated by the same 2PPD process. The details of the MCMC
algorithms are provided in the Web Appendix A. In particular, we employ a split-merge
move to speed up computations for large sample sizes [Dahl, [2005]. The computational
burden of the MCMC algorithm increases for higher values of either 6y, 61, o9 or o1 due
to the increased number of latent clusters generated by the 2PPD process. A discussion
of the computational efficiency of a plain Pdélya-Urn sampler versus the split-merge
implementation is also provided in the Web Appendix D.

Posterior inference on the weight p in is conducted by means of post-MCMC
analysis, by approximating the posterior expected value E[p | data] using auxiliary
indicators, say v; = (’yf’t, . ,’y}k((t)’t), which denote if cluster k € 1,... K® at iteration
t=1,...,T is a realization from pg or p;. More precisely, if we denote by B < T the
burn-in period of the chain, we can compute the following Monte Carlo approximation



(t)
. + K_ 1—n*
of the posterior expected value E[p | data] ~ =1+ Z?:BH ¢ Zk*;;zlrn( Vi),

Similarly, the posterior probability that an observation belongs to the non-null group
can be obtained from the MCMC output as PP} = p(y; = 1| data) ~ 15 ZtT:B_H Vit
where the 7;;’s indicate the MCMC draws of the component indicators v;’s. Then, a
score Z; is considered significant if the corresponding PPi1 is larger than a threshold, say
Kk, chosen to control the Bayesian FDR at a pre-assigned a x 100% level , BEFDR (k) =

YV (1-PP))I(PP!>
Z i:()//_ll(P)Pil(>H) x) < «a |Newton et al., 2004, Muller et al., 2006).

4 Applications

4.1 Simulation study

We investigate the performance of the Bayesian hierarchical 2PPD mixture modeling
framework described in @—@ for large-scale multiple hypothesis testing by means of
a simulation study under S = 5 scenarios. More specifically, we simulate z-scores from
mixture (L)), where fo(2) = N(z | 0,02). We set 02 = 1 for s = 1,...4. For the fifth
scenario, we set 02 = 1.5 to model the effect of hidden correlation among observations
and of the association with unobserved covariates, that may lead to departures from
standard Gaussianity. For f; we choose:

e Scenario 1: f1(z) = 0.67- N (z] —3,2) +0.33- N (z]3,2),

e Scenario 2: f1(z) = N(z | u,1) with u ~ Uniform(2,4),

Scenario 3: fi(z) = N(z | u,1) with u ~ Uniform([—4, —2] U [2,4]),

e Scenario 4: fi(z) = Gamma((—1)" -z | a,b) with @ = 4, b = 1 and v ~
Bernoulli(0.5),

e Scenario 5: f1(2) =0.5-N(2/5,1) +0.5- N (2] — 5,1),

i.e. f1isassumed asymmetric unimodal (scenario 1), symmetric bimodal (scenarios 2),
asymmetric bimodal (scenario 3) and symmetric bimodal with fat tails (scenario 4 and
scenario 5), thus mimicking typical high-dimensional testing situations. An illustrative
plot of data generated under the five scenarios is provided in the Web Appendix C. In
all scenarios, we set p = 0.05, since typically only a small proportion of the comparisons
is expected to be significant in large-scale inference hypothesis testing. Each simulation
includes n = 1,000 simulated scores and is replicated 30 times to allow quantification
of posterior uncertainty and of the frequentist operating characteristics of the testing
procedures.

For model fitting, we employ the mixture model (6)—(7)), where we assume k(- | 6;) =
Normal(- | 9;), with 9; = (u;, 72). The base measure of the 2PPD process fy is chosen
as described in Section with ag = 5, by = 0.2. For PJ, we set k; = 1/3, aq = 1,
61 =1. A NLPyon prior is assumed for my, with r = 3 and k = 2. For the parameters



characterizing the clustering behavior of the 2PPD process priors, we investigate the ef-
fect of different choices of (0, 01) on the inference, with o¢ > 1. More specifically, here
we report the inference for the following values for the pair (og,01): (0.75,0), which
corresponds to assuming a DP on the non-null component; in addition to (0.75,0.1),
(0.75,0.25), (0.9,0.25) to investigate the effect of decreased prior uncertainty, Var(p),
on the components of the two-group 2PPD mixture. We further set the concentration
parameters 6y = 6; = 1 [Do et all [2005]. For the Beta prior on p, we set a = 1 and
b =9. For each dataset, the MCMC algorithm was run for 2,500 iterations after a 2,500
iterations burn-in period. The evaluation of posterior convergence was conducted using
standard Bayesian convergence diagnostics on the chains of the traceable parameters, mq
and p, by monitoring the number of group components and by inspecting the estimated
densities of the null and non-null processes.

We compare the performance of our modeling approach with five alternative methods
for large-scale hypothesis testing: (a) a two-group DP mixture model, which can be seen
as a special case of the modeling framework proposed here, obtained by setting og =
o1 = 0, with a non-local prior on the base measure for the alternative distribution (b) the
local false discovery rate of [Efron|[2004]; (c) the Benjamini and Hochberg procedure [BH,
Benjamini and Hochberg), [1995]; (d) the empirical Bayes mixture model of Muralidharan
[2012], which allows simultaneous estimation of the effect size and of the local false
discovery rate, and (e) the empirical Bayes semi-parametric approach of Martin and
Tokdar| [2012].

For each simulation replicate, results were compared using several performance mea-
sures: the Matthews Correlation Coefficient (MCC), which can be computed from a con-
fusion matrix as MCC = (TPxTN—FPxFN)/\/(TP + FP)(TP + FN)(TN + FP)(TN + FN),
where TP, TN, FP, and FN are the number of true positive, true negative, false posi-
tive and false negative results, respectively; the F1 score, 2TP/(2TP + FP + FN); as well
as precision, specificity, accuracy and the area under the curve (AUC) of the correspond-
ing receiver operating characteristic curve. For each simulation, we identify significant
scores by controlling the Bayesian false discovery rate [Newton et al., [2004], the local
false discovery rate |[Efron, 2004] and the frequentist false discovery rate [Benjamini and
Hochberg, 1995] at the 10% level.

In Table [I] we report the performance metrics achieved in the different simulation
scenarios as a function of the combinations of hyperparameters of the 2PPD process.
Overall, the performance of the proposed 2PPD process is similar, as long as o1 < og.
Higher values of oy lead to draw samples from fy which are closer to the theoretical null,
but the implied tighter control of the variance of the null process may lead to a slightly
decreased performance in some scenarios. If o1 > o, the performance can deteriorate
considerably.

Table[2]reports the results from the comparison with alternative multiple testing meth-
ods. Compared to our method, the method of Martin and Tokdar| [2012] performs quite
well in all scenarios except the fat-tailed one, Scenario 4, where our 2PPD model outper-
forms four out of five competitors. The BH procedure also performs quite well, although
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with slightly lower precision, in the first four scenarios. However, small departures from
the standard Gaussian null assumption (scenario 5) considerably affect the performance
of the BH procedure. The performance of two-group DP mixtures is impacted by the
flexible modeling of both the null and alternative distribution, which leads to a relatively
high number of false assignments. This result is remarkable as various types of mixture
of DP processes have been often proposed for hypothesis testing in the two-group mod-
eling framework. The results also appear fairly robust to different sample sizes (see Web
Appendix E).

4.2 Case study: Microbiome data

We illustrate the applicability of the proposed two-group 2PPD process model on a
publicly available dataset of microbial abundances from a case-controlled study on post-
diarrheal disruption in children from low-income countries. The purpose of the study was
to identify potential microbiota which may show positive associations with moderate-
to-severe diarrhea (MSD) in the case group. Negative associations are also of interest
since they may suggest potential target treatments for recovery from dysbiosis.

Stool samples were obtained from 992 children between the ages of 0 and 59 months,
508 of whom had recently suffered from moderate to severe diarrhea, with the remaining
484 children acting as age-matched controls. The samples were obtained in Mali (M),
the Gambia (G), Kenya (K), and Bangladesh (B) and case/control proportions were
approximately equal for each country.

Due to the nature of the sampling mechanism, the distribution of the microbiome
counts is highly skewed, i.e., a few are highly abundant, whereas most microbes have
low frequencies [Chen and Li, 2016]. Here, we are interested in evaluating the ability of
our model to identify microbiota which may be differently abundant in healthy and MSD
subjects. Therefore, we employ a Negative-Binomial regression model on the taxonomic
abundances y;;, where j = 1,. .., J; indexes the microbiotic taxa, and i = 1,...,n indexes
the samples. As it is typical when dealing with sequencing data [see, e.g., |Witten, 2011,
we let s; denote an estimate of a sample-specific size factor, to take into account the
different sequencing depths of the samples. Also, we let z{#*¢, 277 and xfjuntry denote
the three available covariates for the MSD status, age and country. More specifically,
z77% =1 for cases and 27} = 0 for the matched controls. We adopt Gambia as the
reference value for the other countries, and let xfj( , :vg,
the other countries. Then, we assume:

and xf\;[ be dummy variables for

ind . .
yijmw NB(pij, o), j=1,....Jsi=1,...,n,

log(iij) = log(s:) + Boj + 1 25 + Baj (Y + Baj wlf + Bag il + Bsj wly + €ij,

where o represents a taxon-specific dispersion parameter, and 3y ; represents a taxon-
specific effect, which captures the abundance of taxon j in the control group, and the
Br,;’s represent the effects of each covariate on the taxon abundance. The Negative Bino-
mial distribution was chosen due to its flexibility over the Poisson alternative. The model
was fitted using the glmmTMB package. To illustrate our multiple testing procedure, we
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Figure 1: Microbiome data case study: Histogram of 535 z-scores obtained from the case
term (f1) in the Negative Binomial generalized linear mixed effects model.
We superimpose the posterior probabilities of the events {7; = 1|z} and the
threshold corresponding to a Bayesian FDR of 1%.

consider the fixed case-control effect captured by the estimates of the coefficients 31 ;’s,
which provide the z-scores for testing the differences in abundance between healthy and
MSD subjects. A histogram of the 535 z-scores from the data is given in Figure[ll Since
the estimated coefficients are a function of the original data, the independence assump-
tion may not be satisfied if the original taxonomic abundances are correlated. Indeed,
the presence of hidden correlation among the observables and unknown associations
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with unobserved covariates are major motivations for the two-group model formulation
in [Efron| [2004].

In the two-group model @7, we fix the hyperparameters for the prior processes as
Op =61 =1, 09 =0.75, 01 = 0.10. The specific choice for oy allows small departures of
the empirical null from the theoretical AV(0,1) distribution, while maintaining compu-
tational feasibility in the generation of the latent clusters from the null. A Beta(1,99)
is chosen for p to further encourage sparsity of discoveries. The hyperparameters of the
base measures were set as in Section For the results provided here, we run 20,000
iterations after 20,000 iterations as burn-in. Figure [I] overlays the Monte Carlo esti-
mates of the posterior probability of each taxon belonging to the non-null distribution
to the histogram of the z-scores. By thresholding the Monte Carlo estimate of posterior
probability of the non-null process at a value corresponding to a Bayesian false discov-
ery rate [Newton et al., 2004] of 1%, we identify a total of 74 non-null taxa. On the
contrary, the BH procedure leads to 143 significant microbes, when controlling the FDR
at the 1% level. The locfdr model detects as relevant only 6 taxa. Tables 1 and 2 in the
Web Appendix F report the taxa with the highest discovery probabilities, separately for
positive and negative z-scores. A close inspection of our results reveals some interesting
biological findings (see Web Appendix G).

4.3 Case study: Prostate Cancer Dataset

To assess how our model performs in large-sample cases, we apply our methodology to
the widely known Prostate dataset of [Singh et al|[2002]. See also Efron| [2009]. We
exploit the split-merge move in the MCMC to improve computational efficiency (see
Web Appendix D). The dataset is composed of 6,033 genes for 102 observations from
52 prostate cancer patients and 50 healthy men. We adopt the same prior specification
as in the microbiome case study, with the exception that here we set b = 9, as in the
simulation studies. This choice is in accordance with the discussion in [Efron [2008], who
suggests a proportion a priori of no more than 10% non-null genes for these data. Figure
reports the posterior probabilities of discovery for this dataset. When thresholding the
BFDR at the 20% level, our method flags only 18 genes as relevant. Similarly, the locfdr
procedure flags 19 genes. On the contrary, the BH procedure identifies 60 genes as
significant, even when thresholding the FDR at the 10% level.

5 Discussion and Conclusion

We have considered the two-group model by |[Efron [2004] for multiple hypotheses test-
ing and we have proposed the use of a mixture prior of two—parameter Poisson—Dirichlet
processes as a flexible class of prior processes in that framework. In particular, an appro-
priate choice of the hyperparameters of the 2PPD processes allows the characterization
of small departures from the theoretical null in the estimation of the empirical null dis-
tribution, while leaving flexibility in the modeling of the non-null distribution. We have
also employed a mixture of non-local prior densities as base measure for the alternative
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distribution, to improve separation and facilitate the estimation and identifiability of
the mixture components. The proposed approach has been shown to provide a robust
testing procedure, which compares favorably with recently proposed methods for esti-
mating the components of the two-group model, including the widely-used DP mixture
models. A limitation of the procedure is related to the computing effort, since Markov
chain Monte Carlo algorithms for Bayesian nonparametric models typically require con-
siderable computational time for posterior inference. To provide an illustration, in the
analysis of the Prostate cancer dataset of Section it took approximately 56 hours
to run 20,000 MCMC iterations on a Xeon(R) E5-2640 v4, 2.40GHz Linux sever, with
the computational bottleneck being represented by the iterations requiring a full Pélya-
Urn sampling. Variational Bayes techniques have been developed for many Bayesian
nonparametric models, including the 2PPD process [see, e.g. [Jordan and Blei, 2006].
However, the speed up of MCMC algorithms for Bayesian nonparametric models in
high-dimensional settings is still a topic of ongoing research [see, e.g., |Canale et al.,
2019].

A careful choice of the hyperparameters of the two-group 2PPD model is essential
to ensure good operating characteristics of the testing procedures. We have followed
prevailing practices and set g = 61 = 1 in both the simulations and the data analyses.
Priors on 6y and 81 would need to incorporate constraints to facilitate the identification
of the two-group components.

Finally, in our data analyses, we have proposed a two-group model for the analysis of
data observed under two conditions. However, often the interest is in studying longitu-
dinal changes of repeated measurements within a subject. Therefore, models that take
into account the temporal dependence of the hypotheses are required.
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Table 1: Simulation study: sensitivity results across different settings for oy and o3

for the five simulation scenarios considered in Section (p = 0.05). The
values in the table represent the average MCC and Fj scores, the average
precision (PRE), specificity (SPEC), accuracy (ACC) and the area under the
curve (AUC) of the corresponding receiver operating characteristic curve, over
30 replicates with corresponding standard deviations between brackets.

op = 0.75 og = 0.9
01 =0 g1 =0.1 01 =0.25 01:0.25

Scenario 1

MCC 0.5777 (0.0903) 0.5833 (0.0940) 0.6020 (0.0835) 0.5893 (0.0876)
F1 0.5197 (0.1125) 0.5269 (0.1169) 0.5520 (0.1051) 0.5342 (0.1095)
AUC 0.9095 (0.0245) 0.9143 (0.0224) 0.9201 (0.0253) 0.9200 (0.0207)
PRE 0.9775 (0.0357) 0.9773 (0.0333) 0.9713 (0.0346) 0.9776 (0.0328)
SPEC 0.9995 (0.0007) 0.9995 (0.0007) 0.9994 (0.0008) 0.9995 (0.0007)
ACC 0.9676 (0.0049) 0.9680 (0.0052) 0.9690 (0.0048) 0.9683 (0.0049)
Scenario 2

MCC 0.6249 (0.0673) 0.6242 (0.0695) 0.6212 (0.0681) 0.6135 (0.0644)
F1 0.5809 (0.0831) 0.5796 (0.0855) 0.5771 (0.0835) 0.5665 (0.0808)
AUC 0.9526 (0.0218) 0.9563 (0.0185) 0.9581 (0.0170) 0.9523 (0.0183)
PRE 0.9710 (0.0338) 0.9725 (0.0373) 0.9680 (0.0396) 0.9712 (0.0384)
SPEC 0.9993 (0.0008) 0.9994 (0.0009) 0.9993 (0.0009) 0.9993 (0.0009)
ACC 0.9703 (0.0043) 0.9703 (0.0044) 0.9701 (0.0043) 0.9696 (0.0040)
Scenario 3

MCC 0.5081 (0.0842) 0.5080 (0.0847) 0.5340 (0.0797) 0.5224 (0.0808)
F1 0.4320 (0.1053) 0.4320 (0.1056) 0.4659 (0.1001) 0.4489 (0.1018)
AUC 0.9335 (0.0235) 0.9401 (0.0238) 0.9477 (0.0180) 0.9452 (0.0209)
PRE 0.9721 (0.0438) 0.9714 (0.0425) 0.9682 (0.0402) 0.9772 (0.0360)
SPEC 0.9995 (0.0007) 0.9995 (0.0007) 0.9994 (0.0007) 0.9996 (0.0006)
ACC 0.9624 (0.0044) 0.9624 (0.0045) 0.9638 (0.0045) 0.9631 (0.0043)
Scenario 4

MCC 0.7513 (0.0462) 0.7554 (0.0462) 0.7625 (0.0461) 0.7572 (0.0478)
F1 0.7354 (0.0538) 0.7413 (0.0528) 0.7535 (0.0518) 0.7449 (0.0542)
AUC 0.9552 (0.0162) 0.9627 (0.0119) 0.9685 (0.0107) 0.9661 (0.0087)
PRE 0.9787 (0.0264) 0.9736 (0.0284) 0.9532 (0.0312) 0.9657 (0.0289)
SPEC 0.9993 (0.0009) 0.9991 (0.0010) 0.9984 (0.0013) 0.9988 (0.0010)
ACC 0.9789 (0.0034) 0.9792 (0.0035) 0.9797 (0.0035) 0.9794 (0.0036)
Scenario 5

MCC 0.8920 (0.0229) 0.8832 (0.0249) 0.8529 (0.0232) 0.8694 (0.0241)
F1 0.8951 (0.0219) 0.8860 (0.0241) 0.8534 (0.0235) 0.8710 (0.0238)
AUC 0.9985 (0.0010) 0.9985 (0.0010) 0.9985 (0.0011) 0.9985 (0.0011)
PRE 0.8346 (0.0300) 0.8170 (0.0334) 0.7560 (0.0330) 0.7856 (0.0326)
SPEC 0.9898 (0.0021) 0.9885 (0.0025) 0.9832 (0.0029) 0.9859 (0.0026)
ACC 0.9886 (0.0020) 0.9875 (0.0028) 0.9831 (0.0030) 0.9855 (0.0029)
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Table 2: Simulation study: performance metrics for five other multiple comparison meth-

ods in the five simulation scenarios considered in Section (p = 0.05). The
values in the table represent the average MCC and F) scores, the average
precision (PRE), specificity (SPEC), accuracy (ACC) and the area under the
curve (AUC) of the corresponding receiver operating characteristic curve, over
30 replicates with corresponding standard deviations between brackets.

DPmix local fdr |Benjamini and Hochbergl |Muralidharan| |Martin and Tokdarl

Scenario 1

MCC 0.2329 (0.0209) 0.5708 (0.0721) 0.6629 (0.0648) 0.5379 (0.0804) 0.5835 (0.0757)
F1 0.1980 (0.0145) 0.5067 (0.0932) 0.6427 (0.0736) 0.4643 (0.1023) 0.5251 (0.0962)
AUC 0.9053 (0.0301) 0.8869 (0.0365) 0.9237 (0.0205) 0.9242  (0.0230) 0.9230 (0.0216)
PRE 0.1113 (0.0092) 0.9897 (0.0216) 0.9141 (0.0603) 0.9915 (0.0227) 0.9825 (0.0284)
SPEC 0.6150 (0.0432) 0.9998 (0.0004) 0.9974 (0.0019) 0.9999 (0.0004) 0.9996 (0.0006)
ACC 0.6297 (0.0396) 0.9671 (0.0042) 0.9726  (0.0044) 0.9653 (0.0043) 0.9679 (0.0044)
Scenario 2

MCC 0.2506 (0.0180) 0.6088 (0.0773) 0.6674 (0.0638) 0.5805 (0.0667) 0.6435 (0.0686)
F1 0.2037 (0.0138) 0.5578 (0.0991) 0.6486 (0.0721) 0.5194 (0.0857) 0.6048 (0.0846)
AUC 0.9524 (0.0218) 0.9231 (0.0428) 0.9544 (0.0169) 0.9668 (0.0174) 0.9762 (0.0087)
PRE 0.1140 (0.0087) 0.9796 (0.0304) 0.9129 (0.0556) 0.9895 (0.0216) 0.9698 (0.0332)
SPEC 0.6033 (0.0364) 0.9995 (0.0008) 0.9974 (0.0018) 0.9998 (0.0004) 0.9993 (0.0008)
ACC 0.6213 (0.0339) 0.9694 (0.0048) 0.9729 (0.0042) 0.9676 (0.0004) 0.9715 (0.0044)
Scenario 3

MCC 0.2337 (0.0195) 0.5397 (0.0854) 0.6544 (0.0578) 0.4840 (0.0883) 0.5591 (0.0740)
F1 0.1948 (0.0129) 0.4708 (0.1087) 0.6342 (0.0670) 0.3973 (0.1080) 0.4970 (0.0948)
AUC 0.9400 (0.0206) 0.9069 (0.0359) 0.9500 (0.0191) 0.9481 (0.0197) 0.9481 (0.0182)
PRE 0.1085 (0.0079) 0.9759 (0.0424) 0.9089 (0.0561) 0.9901 (0.0328) 0.9707 (0.0437)
SPEC 0.5679 (0.0349) 0.9995 (0.0008) 0.9972  (0.0020) 0.9999 (0.0005) 0.9994 (0.0010)
ACC 0.5880 (0.033)  0.9641 (0.0050) 0.9710 (0.0040) 0.9611 (0.0043) 0.9652 (0.0044)
Scenario 4

MCC 0.2671 (0.0194) 0.7080 (0.0474) 0.7849 (0.0443) 0.6840 (0.0486) 0.6831 (0.0470)
F1 0.2161 (0.0156) 0.6801 (0.0586) 0.7853 (0.0448) 0.6492 (0.0602) 0.6485 (0.0595)
AUC 0.9612 (0.0156) 0.9406 (0.0246) 0.9709 (0.0085) 0.9627 (0.0159) 0.9658 (0.0139)
PRE 0.1217 (0.0099) 0.9919 (0.0172) 0.9136  (0.0502) 0.9972 (0.0106) 0.9953 (0.0123)
SPEC 0.6288 (0.0345) 0.9998 (0.0005) 0.9965 (0.0023) 0.9999 (0.0003) 0.9999 (0.0004)
ACC 0.6459 (0.0325) 0.9758 (0.0033) 0.9812  (0.0036) 0.9741 (0.0034) 0.9741 (0.0032)
Scenario 5

MCC 0.2671 (0.0194) 0.8632 (0.0492) 0.7861 (0.0360) 0.8506 (0.0486) 0.8879 (0.0332)
F1 0.5303 (0.0420) 0.8611 (0.0529) 0.7792  (0.0395) 0.8475 (0.0414) 0.8888 (0.0338)
AUC 0.9980 (0.0012) 0.9971 (0.0041) 0.9986 (0.0010) 0.9985 (0.0012) 0.9985 (0.0011)
PRE 0.3622 (0.0163) 0.9811 (0.0286) 0.6433 (0.0531) 0.9866 (0.0229) 0.9745 (0.0323)
SPEC 0.9058 (0.0155) 0.9992 (0.0013) 0.9705 (0.0067) 0.9994 (0.0009) 0.9988 (0.0015)
ACC 0.9104 (0.0385) 0.9878 (0.0041) 0.9716 (0.0064) 0.9867 (0.0032) 0.9899 (0.0028)
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Web Appendix A: Posterior inference

In this Section, we detail the MCMC algorithm for posterior inference for model (6) and
model (8)—(9), with particular regards to inference on the auxiliary variable indicators
~;’s and the two-group components’ weight p.

Before deriving the full conditional distributions, we first need to outline a few prop-
erties of the clustering implied by the EPPF (7). More specifically, an underlying as-
sumption of the two-group model is that if two observations assume the same value, they
should not be assigned to different groups. For the 2PPD processes, the following result
holds

LeEMMA 1. If Zy, ..., Z, are a random sample from an exchangeable sequence Z governed

by a random probability measure as defined in (6), with ij", j = 0,1, being non-atomic
base measures with common support, then

P(Z; =Z; | vi #v;] =0

fori#£j.

The result follows directly from the characterization of the 2PPD process as an infinite
mixture and the fact that Pj’»" is non-atomic. A notable consequence of this result is
that Z;’s belonging to the same cluster are generated by the same PD process. In the
case of the 2PPD mixture models (9), Lemma 1 applies to the atoms generated by the
nonparametric priors. Given the same set of hypotheses, we have that

P[9; = 9 | v # 5] = 0.

As we outline below, this result is crucial for a proper characterization of the full condi-
tionals of each model.

e MCMC for model (6): At any iteration of the MCMC algorithm, the vector of
observations Z = (Z1,...,Zy) is partitioned into K separate clusters, K > 1. Let
Z1,...,Zy denote the K < n unique values in Z. We denote the corresponding
partition sets by Cy,, = {t : Z; = Z}}, k = 1,...,K, and by nj = |Cyy|, the
cardinality of each set. By virtue of Lemma 1, two observations assigned to the
same cluster are also assigned to the same random probability measure. Therefore,
let 77 be an auxiliary random variable such that v; = 0 if the partition set C ,
contains draws from pg and v, = 1 otherwise. Then, for any ¢ € C}y, one has
Y = 7, and, conditional on the partition sets Cj,, k = 1,..., K, the K-tuple
v = (5, -, 7k) € {0, 1} describes the solution of the multiple testing problem,
analogously to the vector v = (v1,...,7) € {0,1}". Then, posterior samples for
~ can be immediately derived from the posterior samples of the vector v* and the
configuration of the partition sets Cj ,, k = 1,..., K, which can be obtained by
means of a Gibbs sampling scheme.
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More specifically, let us consider the joint probability distribution of the vector
~¥ = (71,--.,7), and the partition Cy, = {Ci,...,Ckn},

L, Cipns-- s Crp) =ZL()ZL(Cin,- .. Crn | 7).

The joint distribution of v can be obtained as

(@) 7| (0)n—p
L) =—""—"—"", 9
= )
where |y| = > ;. Here, |7v| indicates the number of observation currently as-
signed to the non-null process. By Lemma 1 and Proposition 1, the conditional
distribution of C1,...,Ck,, given v can be written as

g(clun’ SRR CK,TL ‘ ’7) = g(cl,na cee 7CK,n ’ '7*)
=1 V(L =70, omre (L - 7i))
% (10)
X Hﬁ'{{,i(nwi o) [T T Ty (K,
k:lieCk’n

where K7 = Zszl v and Ko = K — K indicate the number of clusters belonging
to p1 and to py, respectively. Expression @ and emphasize that it is sufficient
to consider only the cluster-based vector of indicators v* in order to determine the
joint probability distribution of the 4 and the partition C,,. Therefore, in order
to obtain the full conditional distribution of the ~;’s, we may focus only on the
v;’s and the vector of K < n observations in Z*. Let v*, denote the v* vector
with the kth entry removed. Similarly, we define «v_; as the vector where the ith
entry is deleted. This implies that v*, € {0,1}*~! and that v_; € {0,1}"L.
Also let n_p, = Z{;k n;y; denote the number of observations not included in
Ck,n which at the same time come from the non-null process. Furthermore, for
any k= 1,..., K, let K_; = |v%,| = Z{;k 7 indicate the number of clusters
assigned to the non-null distribution p; after removing cluster Cy ,,.

We can now write the full conditional of the 7;’s. For notational simplicity, let
vi = &, where £ € {0,1}. Then, the full conditional .23 (& | v*,, Z*,C}) o pre¢
where

Pre = (a)n—k,1+nk§(b)n—n—k,1—nkE Pf*(dZ;;) H P'Z* (dZ;) H ]1{7;}(71)
]#k leck,n
X T 0 (=), k(1= ), k(1= )

(n—k,1+tnk) * %
X HKi:’llJrg,’f (s, ks, o YR )-

In particular, the probability P(v; = 1| ~v*,,Z*,C,) determines the probability
that for any i € Cyj,, the observations Z; = Z; are assigned to the non-null
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distribution, and can be obtained as

1

gk’(é =1 ‘ 'yik,Z*’Cn) = Wv

where the ratio

X Py(dZy) T(a+n_ga) Fb+n—n_g1)
pe1 PrdZY) T(a+n_py+ng) T(b+n—n_p1 —ng)
H%:;L(:Z‘i)’o(nl(l — ) ng, k(1 —75%))
(n—n_p1—nk)
My g o (L =), (1= 75)
TR k)
et ; o
Hg?f:"ll_i_m)(nlﬂyl, My MR )

The previous expression is valid for all normalized random measures with indepen-
dent increments. If p; is a 2PPD(0;, 05, Pj‘), 7 =0, 1 process, then the above ratio
further simplifies as:

Pro P(T(dZZ) (b +n—n_g1— nk’)nk (1 - Uo)nrl

pea Pr(dZg) (a+n_g1)n, (1= 01)n—1
0o+ (K — K_j1 — 1) 09 (01 + N_k,1)ny (11)
01+ K_101 (90+n—n_k71 _nk)nk.

It is worth noting that if the two base measures coincide, i.e., Py = Py, then the
full conditional does not depend on Z;; therefore, the probability that Z; is a draw
from the non-null depends only on the clustering behavior of the 2PPD process
implied by the parameters characterizing py and p;.

To summarize, in order to implement a Gibbs sampler for sampling the auxiliary
indicators in (6), at each iteration ¢t = 1,...,T, we draw each v}, from the full
conditional £ (§ =1 | v*,, Z*,Cy). The vectors +f, t = 1,...,T, can then be
mapped to the vector v using the partition sets C,.

e MCMC for model (8)—(9): The full conditionals for the vectors 7} are derived
in a similar way as above. More specifically, for v; = &, let 19};75 ~ Pg , indicate an
atom of p¢, £ € {0,1}, k=1,... K. Then,

g[é ‘ ’Yikacl,nw . -7CK7TL7Z]

o { / I % (2195) Pg(df}’,;f)}F(a + g1 F T +n—n_g1 —npl)
lECkm

24



—N—k,1— 13 * *
X T ) (1= 9), k(L= €)oo (1= )

(n—k,1+nkE) * %
X HI?L:J:LST?I{ (nlfyl,...,nkf,...,anyK) H ]1{5}<’)/l),

lECk’n
If we denote with fj ¢ the marginal likelihoods
w(@iee,) = { [ 1 ke Calorg) oo
lECk’n

we can recover an expression similar to (L1)):

]M _ @ (b +n — n,m — nk)nk (1 — Uo)nk,1

Pe1 Jra (a+n_k1)n, (1=01)n,—1

0y + (K . K—k,l — 1)0’0 ((91 + n—k,l)nk (12)
01 + ka,l o1 (90 +n—n_p1— nk)nk '

Since p is conditionally independent from the observations Z;’s given the v;’s and
the parameter 1;, we can obtain the full conditional distribution of p as

E[dp | Zl,...,Zn,’ﬂl,...,197“’}/1,...,’)/n]
I'(a+b+n)
I'(a+n*)I'(b+n—n*)

_ a+n*71<1 _ \b+tn—m*-1 1

p) (0,1) (p),

that is, as a sample from a Beta(a + n*,b + n — n*), with n* = Zszl njv;i. The
sampling algorithm is then completed by drawing samples of the ¥;’s from the
respective full conditionals.

The full conditional of 19; is obtained as

i ki (Zi | 9iy) P2 (A0 ,)
Z dﬁlv i 19—i77*7 Cn, 7| x q( ) i v e Vi Vi
[ ! ‘ ] ’ f]RX]RJF k’Yz(Zl | ﬂi,'yi) P,;; (d’ﬂz,'yz)

R,(Y;i)

(4)
+> g S (dDis,)
j=1
where ¥_; = {(uj,sz)%. : j#i} and mg;i) is the number of unique values in 9_;
that share the same generating random probability measure p,, with 9;,,. Corre-

spondingly, the respective frequencies are denoted as n,(yjz) = (n%}?, e ,n,({;f)%)

with weights q(()i) and qj(-i) as follows

@) (S ) (=) (—i) Y
4o X Hﬁ(w;i)JrL% (nl,fyi yr 7”/@7;,%7 1) k’Yi(Z'L ’ 192)
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. (—1) . . .
(i) H(Iny,- [+1), (—i) (—i) 1 (=)
G oM o oMy F b )

Specializing the previous formula to the 2PPD process, we obtain:
(0,500 [ 10025 00
q](z) X (ng;? - ‘7%> ki (Zi | ﬁj’m) :

where [ k., (Z; | 9;) P* (d9;) is the marginal likelihood based only on the obser-
vation Z;

Finally, the full conditional for mq is sampled with a simple adaptive Metropo-
lis Hasting step [Roberts and Rosenthal, [2009]. Here, we can take advantage of
the conjugacy properties of the model and employ a marginal Gibbs sampler as
discussed in Ishwaran and James [2001]. Alternatively, for non-conjugate models,
a Metropolis-Hastings algorithm would be equivalently straightforward to imple-
ment, and mimic widely used algorithms for Dirichlet Process mixture models
[Neal, 2000].

Implementation of the Split-Merge move for model (8)-(9): In the cases
of Dirichlet and Pitman-Yor process mixture models, posterior sampling is often
performed via Gibbs sampler. Unfortunately, especially in marginal models, the
Gibbs sampler explores the state space by means of conditional updates cycling
through all observations and can get stuck in local modes. Thus, it can mix poorly
across modes that have high probability [Dahl, 2003]. To address the deficiencies
of the Gibbs sampler, Jain and Neal [2004, 2005] propose a split-merge (SM)
algorithm which greatly improves the mixing. To obtain the best performance,
they recommend to cycle between the usual Gibbs sampler and their SM proposal.
Nevertheless, their sampler is known to be computationally demanding. To obviate
this problem, Dahl proposes an enhanced versions of the first split-merge sampler,
called SAMS, that can be used in conjugate cases [Dahl, [2003] and in non-conjugate
cases [Dahl, |2005] for Dirichlet Process mixture models.

In the following, we adapt the conjugate version of Dahl’s SM sampler to be em-
ployed in Pitman-Yor mixture models. In particular, according to Lemma 1, given
the process allocation variables -y, the two processes are independent. This allows
us to perform two separate Split and Merge steps, one per process. In the follow-
ing, we present the sampler for the generic process 7/, 7/ = 0,1. Let us denote
the partition observed among the observations with n = {51, 52, ..., Sk~ }, where
S; denotes the subset of indexes assigned to the [-th cluster and K* denotes the
number of subsets in the partition.

Steps

1. Among the observations assigned to the same process ', uniformly select a
pair of distinct indices ¢ and j.
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2. If 7 and j belong to the same component in 7 , propose n* by attempting a
split move:

S1 For convenience, denote the common component containing indexes i
and j as S. Remove the indexes i and j from S and form singleton sets
S; ={i} and S; = {j}.

S2 Letting k be successive values in a uniformly-selected permutation
of the indexes in S, add k to .S; with probability
Pr(k € 5|5, Sj,v)
_ (niy — 0y) [ F (yr; 9) dHs, (9)
(nipy — 04) [ F (yr39) dHs, (0) + (njy — o) [ F (yx30) dHs, ()

where Hg is the posterior distribution of a component location ¢ based on
the prior P;", and the data corresponding to the indices in S . Otherwise,
add k to S; . Note that, at each iteration above, either S; or S; gains an
index resulting in n; ., or n; . increasing by 1 . Further, Hg, and Hg,;
evolve to account for each additional index. We remark how our model
employs non-conjugate base measures for the Null process. However,
it is straightforward to perform precise numerical integration over the
parameters’ space. Working with marginal distributions m./ (S;) of all
the observations in the [-th cluster, we can rewrite

F (S;;9) P (9)dV
/F(y’“;ﬁ)dHSiw):/F(yk;ﬁ) ( m)(;ls )

_ My (ykv SZ)
mey (S;)
and consequently
mr (Yk,5s)
(i = 0y) =05y
Pr(k € 5i[S:.5;.4) = ey (13)

m.r (Yk,Si) m. (Yx,S;)

(i — 0y) 1 (57) + (njy —0y) m_ 1 (5;)

Alternatively, one can employ the steps presented in Dahl [2005] for non-
conjugate cases.

S3 Compute the Metropolis-Hastings ratio and accept n* as the current state
n with probability given by this ratio. The calculation of the Metropolis-
Hastings ratio is discussed below.

3. Otherwise, i and j belong to different components in 7. Propose n* by at-
tempting a merge move:

M1 For convenience, let S; and S; denote the components in 7 containing 7
and j, respectively.

M2 Form a merged component S = S; U S;.
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M3 Propose the following set partition: n* =n U {S}\ {S;, S;}.
M4 Compute the Metropolis-Hastings ratio and accept n* as the current state

n with probability given by this ratio. Again, the calculation of the
Metropolis-Hastings ratio is discussed below.

Computing the Metropolis Ratio The MH ratio for the SAMS sampling algo-
rithm is given as:

p(n*ly) Pr(nn®)

p(nly) Pr(n*[n)

a(n*|n) = min |1,

where p (n*|y) is the partition posterior distribution evaluated at n* and Pr (n*|n)
is the probability of proposing n* from the state 7.

15 0y +ior)
We have that p(i|y) o< p(y[n)p(n), where p(n) = =45 == TTimy (1= 0/)n, -1
Y

is the 2PPD process EPPF and

K K K
i) =TS0 =] / TT F (s 9) P (0)do = [ (S)

keS;

Finally, let us focus on p(n*|n). When the proposal n* is a split update, Pr(n*|n)
is merely the product of the probabilities in associated with the chosen al-
locations. Since these two split components could only be merged in one way,
Pr(n|n*) = 1. Conversely, when the proposal n* is a merge update, Pr(n*|n) is 1,
but Pr(n|n*) is the product of the probabilities in associated with the alloca-
tion choices that would need to be made to obtain the split partition 7, although
no actually splitting is performed. Dahl underlines that it is critical that a random
permutation of the indexes is used when performing this imaginary split.

Web Appendix B: Proof of Proposition 1.

We first evaluate the probability distribution of the Z;’s, partitioned into K distinct
clusters with representatives located at infinitesimal intervals dz1, ..., dx i, around points
x1,...,2TK, with respective multiplicities ny, no, ..., ng.

P[Z7 € dxy,..., 2 € dxg,n1, ..., NK]

K )
po(dz;) yaldz) 1™
: Hl{“’ 0

ni nK
= Z o Z (n1> ... (nK) wi1+"'+iK(1 _ w)n—(i1+-~'+iK) %
i1=0 i gl

1
k=0 K
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[T (‘alde)” ()™

j=1

From Lemma 1, it follows that for any i; & {0,n;} the expected value above vanishes.
Hence, for i; € {0,n;} one has

i ni—i;

K Mo(dﬂﬁ') i L (dx) nj—ij K : g
H( pio(X) p1(X) jl_ll[ 0 (da;)] ™ [Py (da;)]
H\(:\L,lg)(ih i) Hg?:ﬁ,:?(nl — i1, K —iK)

The representation in Proposition 1, then, follows when integrating out with respect
to p and xq, ..., 2.

Web Appendix C: Plot of the five Scenarios considered in the
simulation study
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Figure 3: The five Scenarios considered in the simulation study in Section 4.1. We plot
the histograms of the simulated data and superimpose the null (blue) and
alternative (red) density functions.
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We recall here the five scenarios that we investigate in our simulation study:
We simulate z-scores from mixture (1), where fo(z) = N(z]0,02), k=1,...,5and
for f; we choose:

0.67- N'(2| — 3,2) +0.33 - N (2]3,2),
N (z | u,1) with u ~ Uniform(2,4),

e Scenario 1: fi(z

)
e Scenario 2: fi(z)
)

e Scenario 3: f1(z) = N(z | u,) with u ~ Uniform([—4, —2] U [2,4]),

e Scenario 4: fi(z) = Gamma((—1)" -z | a,b) with a = 4, b = 1 and v ~
Bernoulli(0.5),

e Scenario 5: fi(z) =0.5-N(2]5,1)+0.5-N (2] = 5,1),

where 0,% =1for k =1,...,4 and 052) = 1.5. In words, f1 is assumed asymmetric

unimodal (scenario 1), symmetric bimodal (scenario 2), asymmetric bimodal (scenario 3)
and symmetric bimodal with fat tails (scenario 4 and scenario 5), thus mimicking typical
high-dimensional testing situations. Moreover, in scenario 5 the null distribution departs
from the theoretical standard Gaussian and the alternative distribution is chosen to be
easily detectable, being very separated from the null one. Figure [3|shows the histograms
of data simulated under the five scenarios.

Web Appendix D: Computational Burden

We perform a simulation study where we investigate the computational time needed by
the algorithm in its original specification (Pélya Urn scheme - PUS) compared to the
Split-Merge (SM) alternative proposed in the previous subsection. More precisely, we
keep track of the time in seconds that the model needs to run 100 iterations. For the
SM case, we perform 10 SM moves per iterations, and full sweep is executed every 10
steps.

We study how the computational time varies as the sample size and the discount pa-
rameter of the null process change. These two quantities play an important role in the
sampler efficiency, since the expected number of clusters grows for larger n and og. In
particular, o9 > o1 implies that the number of latent clusters generated by the null
2PPD process grows quickly, and — as a result — the algorithm becomes computationally
expensive and slow. This is true, for example, not only for the sampler we initially pro-
posed but also for slice sampling implementations. In our case, a slice sampler algorithm
has a tendency to create a huge number of atoms, making the sampling unfeasible to be
performed in reasonable time.

Table [3| reports the results of our comparison of PUS and SM samplers in seconds.
The computational burden becomes more evident with the increase in sample size. The
impact of o¢ on the computational time is amplified with increasing sample size. We see
how, for sample sizes beyond 1,000 observations, the PUS sampler becomes extremely
inefficient, making inference infeasible. Relying on the SM moves considerably speeds
up the algorithm. We also notice how the value of oy has a small impact on the SM
sampler.
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o) = 0.5 o) = 0.75 gy = 0.9

n = 100 PUS 5.480 5.916 6.007
SM 6.373 5.625 5.614

n = 200 PUS  12.396 14.498 15.009
SM 10.448 10.625 10.696

n = 500 PUS  51.319 58.532 61.201
SM 22.625 23.585 18.599

n=1,000 PUS 186.226  221.853  236.200
SM 54.390 52.042 42.521

n=2,000 PUS 914.227 1137.689 1160.732
SM 145.904  146.850 144.341

Table 3: Computational time in seconds for 100 iterations with the Pélya Urn Scheme
(PUS) sampler, compared with the Split-Merge (SM) scheme. We investigate
how the time varies as the sample size n and the discount parameter of the null
process change.

Web Appendix E: Additional simulation studies

Sensitivity to discount parameters

In this Section, we study the effect of considering discount parameters og, o1 with
o9 < o01. More specifically, we assume o9 = 0.1 and o; = 0.75. The remaining
hyper-parameters are set according to the simulation scenarios in Section 4.1. When
thresholding the BFDR at 10%, all the observations are flagged as interesting, since all
the posterior probability of the alternative are too high. To exemplify, Figure 4] reports
the posterior probability of the alternative for all the observations of one of the datasets
in the five different scenarios. To obtain the results reported in Table 4, we set the
threshold at the 1% level. We see how the model fails to recognize the two underlying
distributions, since the null distribution is free to vary and even the values around zero
are taken over by the alternative.
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Scenario MCC F1 SPEC ACC PRE AUC
1 01569 (0.0147) 0.1409 (0.0062) 0.3823 (0.0272) 0.4114 (0.0258) 0.0760 (0.0035) 0.9189 (0.0213)
2 01668 (0.0136) 0.1436 (0.0066) 0.3792 (0.0312) 0.4096 (0.0296) 0.0774 (0.0038) 0.9477 (0.0168)
3 01664 (0.0131) 0.1468 (0.0064) 0.3724 (0.0320) 0.4042 (0.0302) 0.0793 (0.0037) 0.9448 (0.0178)
4 01697 (0.0168) 0.1445 (0.0094) 0.3765 (0.0459) 0.4075 (0.0436) 0.0779 (0.0055) 0.9656 (0.0100)
5 01157 (0.0125) 0.1183 (0.0048) 0.2138 (0.0363) 0.2531 (0.0345) 0.0629 (0.0027) 0.9867 (0.0026)
Table 4: Simulation study: sensitivity results across the five simulation scenarios con-
sidered in Section 4.1 (p = 0.05), modeled with PY's processes characterized by
fp =601 =1 and o9 = 0.1 < 01 = 0.75. The values in the table represent the
average M CC and F) scores, the average precision (PRE), specificity (SPEC),
accuracy (ACC) and the area under the curve (AUC) of the corresponding
receiver operating characteristic curve, over 30 replicates with corresponding
standard deviations between brackets.
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Figure 4: Posterior probability of the alternative for observations sampled in the first

dataset of the five different scenarios, estimated adopting o9 = 0.1 and o1 =

0.75

Sensitivity to the sample size

We also investigate the extent by which the sample size could affect the results. More
especifically, we compare the results obtained with the 2PPD model (g = .75, o1 = 0.1)
and the different competitors on Scenario 4 and 5 for different sample sizes. We consider
n = 200,500, 800, 1500, 2000 for both the scenarios. Web Tables [5] and [6] present the
results. We can appreciate how the results are stable throughout the different sample
sizes. The symbol — indicates the cases where the models failed to be estimated due to
a too small sample size.
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Scenario 4

n Index 2PPD locfdr |Benjamini and Hochbergl |Muralidhamn |1\rlartin and Tokdar

200 MCC 0.7146 (0.1210) 0.6651 (0.1227) 0.7354  (0.0906) — 0.5918 (0.1645)
F1 0.6910 (0.1458) 0.6238 (0.1511) 0.7217 (0.1072) — 0.5305 (0.2045)

SPEC 0.9707 (0.0241) 0.8774 (0.0871) 0.9656 (0.0328) — 0.9569 (0.0360)

ACC  0.9604 (0.0703) 0.9905 (0.0522) 0.9301 (0.0976) — 1.0000 (0.0000)

PRE 0.9986 (0.0024) 0.9996 (0.0019) 0.9968 (0.0047) — 1.0000 (0.0000)

AUC 09767 (0.0082) 0.9733 (0.0083) 0.9775 (0.0069) — 0.9693 (0.0096)

500 MCC 0.7042 (0.0881) 0.6609 (0.0786) 0.7547 (0.0773) — 0.6220 (0.0917)
F1 0.6787 (0.1054) 0.6203 (0.0999) 0.7492  (0.0842) — 0.5702  (0.1165)

SPEC 0.9607 (0.0240) 0.9189 (0.0481) 0.9689 (0.0182) — 0.9491 (0.0382)

ACC  0.9699 (0.0431) 0.9916 (0.0261) 0.9126 (0.0572) — 0.9970 (0.0166)

PRE 0.9991 (0.0013) 0.9997 (0.0009) 0.9966 (0.0024) — 0.9999 (0.0004)

AUC 09757 (0.0062) 0.9727 (0.0052) 0.9791 (0.0058) — 0.9703  (0.0056)

800 MCC 0.7460 (0.0564) 0.7041 (0.0588) 0.7809 (0.0435) 0.6751 (0.1156) 0.6875 (0.0484)
F1 0.7292  (0.0663) 0.6741 (0.0738) 0.7797 (0.0464) 0.6402 (0.1332) 0.6536  (0.0604)

SPEC 0.9644 (0.0170) 0.9337 (0.0368) 0.9733 (0.0111) 0.9511 (0.0867) 0.9665 (0.0137)

ACC  0.9758 (0.0263) 0.9958 (0.0129) 0.9164 (0.0549) 0.9983  (0.0089) 0.9969 (0.0118)

PRE  0.9992 (0.0009) 0.9999 (0.0004) 0.9965 (0.0026) 0.9999 (0.0003) 0.9999 (0.0003)

AUC 09786 (0.0042) 0.9756 (0.0040) 0.9809 (0.0034) 0.9740 (0.0056) 0.9744  (0.0033)

1500 MCC 0.7368 (0.0334) 0.6988 (0.0341) 0.7736  (0.0359) 0.6801 (0.0327) 0.6782 (0.0347)
F1 0.7204 (0.0380) 0.6694 (0.0434) 0.7722  (0.0387) 0.6447 (0.0411) 0.6428 (0.0436)

SPEC 0.9592 (0.0113) 0.9362 (0.0280) 0.9706 (0.0086) 0.9679  (0.0093) 0.9690 (0.0087)

ACC  0.9702 (0.0228) 0.9908 (0.0172) 0.9172  (0.0370) 0.9974  (0.0100) 0.9949 (0.0139)

PRE 0.9991 (0.0007) 0.9997 (0.0005) 0.9967 (0.0017) 0.9999 (0.0003) 0.9999 (0.0004)

AUC 09778 (0.0024) 0.9751 (0.0024) 0.9804 (0.0028) 0.9738 (0.0022) 0.9737 (0.0024)

2000 MCC 0.7269 (0.0359) 0.6913 (0.0415) 0.7730 (0.0365) 0.6660 (0.0427) 0.6698 (0.0383)
F1 0.7075 (0.0416) 0.6605 (0.0518) 0.7732  (0.0385) 0.6266 (0.0537) 0.6315 (0.0481)

SPEC 0.9596 (0.0115) 0.9485 (0.0277) 0.9718 (0.0085) 0.9694  (0.0096) 0.9699 (0.0090)

ACC 0.9749 (0.0197) 0.9889 (0.0167) 0.9066 (0.0392) 0.9977 (0.0068) 0.9979 (0.0065)

PRE  0.9992 (0.0006) 0.9997 (0.0005) 0.9962 (0.0018) 0.9999 (0.0002) 0.9999 (0.0002)

AUC 0.9771 (0.0026) 0.9746 (0.0029) 0.9803 (0.0029) 0.9729 (0.0029) 0.9731  (0.0026)

Table 5: Simulation study: sensitivity results for three different sample sizes evaluated

on Scenario 4, as defined in Section 4.1 (p = 0.05). The 2PPD model is char-
acterized by 8y = 61 = 1, 09 = 0.1 and o1 = 0.75. he values in the table
represent the average M CC and F) scores, the average precision (PRE), speci-
ficity (SPEC), accuracy (ACC) and the area under the curve (AUC) of the
corresponding receiver operating characteristic curve, over 30 replicates with
corresponding standard deviations between brackets.
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Scenario 5
n Index 2PPD locfdr |Benjamini and Hochbergl 1995 |l\'111ralidharan
200 MCC 0.8789 (0.0519

|Martin and Tokdar:

0.8598 (0.0798) 0.7989 (0.0826) 0.8536 (0.1731)

)
F1 08796 (0.0518) 0.8545 (0.0893) 0.7930 (0.0875) — 0.8410 (0.2052)
AUC 09981 (0.0042) 0.9855 (0.0298) 0.9981 (0.0040) — 0.9979 (0.0042)
PRE 0.7988 (0.0721) 0.9893 (0.0328) 0.6700 (0.1187) — 0.9903 (0.0296)
SPEC  0.9865 (0.0060) 0.9995 (0.0016) 0.9723 (0.0133) — 0.9995 (0.0016)
ACC  0.9863 (0.0063) 0.9877 (0.0065) 0.9730 (0.0132) — 0.9882 (0.0116)
500 MCC 0.8606 (0.0406) 0.8668 (0.0600) 0.7891 (0.0462) — 0.8982 (0.0463)
F1  0.8624 (0.0404) 0.8638 (0.0652) 0.7827 (0.0496) — 0.8987 (0.0480)
AUC 09976 (0.0016) 0.9973 (0.0050) 0.9987 (0.0013) — 0.9986 (0.0015)
PRE 0.7797 (0.0594) 0.9865 (0.0357) 0.6479 (0.0658) — 0.9794 (0.0357)
SPEC  0.9853 (0.0049) 0.9993 (0.0019) 0.9696 (0.0082) 0.9989 (0.0019)
ACC  0.9844 (0.0050) 0.9877 (0.0052) 0.9709 (0.0081) 0.9904 (0.0042)
800 MCC 0.8834 (0.0312) 0.8572 (0.0547) 0.7859 (0.0414) 0.8530 (0.0509) 0.8896 (0.0421)
F1  0.8854 (0.0302) 0.8538 (0.0595) 0.7795 (0.0456) 0.8497 (0.0551) 0.8896  (0.0439)
AUC 09984 (0.0018) 0.9954 (0.0075) 0.9985 (0.0018) 0.9983 (0.0020) 0.9984  (0.0017)
PRE 0.8093 (0.0387) 0.9850 (0.0226) 0.6459 (0.0624) 0.9866 (0.0202) 0.9824 (0.0199)
SPEC  0.9878 (0.0029) 0.9993 (0.0010) 0.9707 (0.0079) 0.9995 (0.0008) 0.9992  (0.0009)
ACC 09873 (0.0035) 0.9873 (0.0046) 0.9716 (0.0075) 0.9870 (0.0042) 0.9900 (0.0036)
1500 MCC  0.8869 (0.0179) 0.8763 (0.0452) 0.7799  (0.0288) 0.8619  (0.0409) 0.8954 (0.0333)
F1  0.8897 (0.0177) 0.8753 (0.0485) 0.7727 (0.0316) 0.8599  (0.0437) 0.8966 (0.0338)
AUC 09984 (0.0013) 0.9964 (0.0047) 0.9986  (0.0009) 0.9986  (0.0009) 0.9986 (0.0009)
PRE 08218 (0.0275) 0.9836 (0.0165) 0.6337 (0.0424) 0.9865 (0.0162) 0.9763 (0.0236)
SPEC  0.9887 (0.0022) 0.9993 (0.0007) 0.9691 (0.0054) 0.9994  (0.0007) 0.9989 (0.0011)
ACC  0.9878 (0.0021) 0.9888 (0.0039) 0.9702  (0.0052) 0.9875 (0.0035) 0.9904 (0.0030)
2000 MCC  0.8920 (0.0198) 0.8715 (0.0413) 0.7853 (0.0237) 0.8579 (0.0365) 0.8893 (0.0282)
F1  0.8952 (0.0191) 0.8701 (0.0451) 0.7789  (0.0260) 0.8552  (0.0396) 0.8901  (0.0290)
AUC 09982 (0.0013) 0.9958 (0.0049) 0.9984 (0.0012) 0.9983 (0.0013) 0.9982 (0.0014)
PRE 0.8350 (0.0255) 0.9847 (0.0154) 0.6426 (0.0362) 0.9892 (0.0111) 0.9806 (0.0176)
SPEC  0.9899 (0.0018) 0.9993 (0.0007) 0.9708  (0.0044) 0.9996  (0.0005) 0.9991  (0.0008)
ACC  0.9887 (0.0021) 0.9885 (0.0034) 0.9718  (0.0041) 0.9874  (0.0030) 0.9900 (0.0024)

Table 6: Simulation study: sensitivity results for five different sample sizes evaluated on
Scenario 5, as defined in Section 4.1 (p = 0.05). The 2PPD model is character-
ized by g = 01 = 1, 09 = 0.1 and o1 = 0.75. he values in the table represent the
average M CC and F) scores, the average precision (PRE), specificity (SPEC),
accuracy (ACC) and the area under the curve (AUC) of the corresponding
receiver operating characteristic curve, over 30 replicates with corresponding
standard deviations between brackets.
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Web Appendix F: Microbiome data: list of differentially
abundant taxa
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Table 7: Microbiome data case study: differentially abundant taxa with negative z-scores
indicating less abundance in the children with moderate to severe diarrhea.
Most are well known commensal bacteria, e.g. Prevotella spp. and Clostridium
spp. Posterior probability that the z-score belongs to the non-null group is
given for each taxa. The dotted line highlights the difference between the genes
flagged as relevant by our method and the ones found with the locfdr model.

Taxon z-score p(K; = 1|data) Efron LocFdr
Prevotella copri -10.13 1.00 0.99
Prevotella sp. DJF_RP53 -9.76 1.00 0.98
Prevotella sp. BI-42 -9.72 1.00 0.98
Prevotella sp. DJF_B112 -9.64 1.00 0.98
Clostridium lituseburense -8.53 1.00 0.86
Clostridium paraputrificum T8 .00 062
Faecalibacterium prausnitzii -7.49 1.00 0.50
Prevotella sp. oral clone BP1-28  -7.38 1.00 0.46
Clostridium bartlettii -7.01 1.00 0.33
Clostridium sp. FRC_Cl11 -6.80 1.00 0.27
Faecalibacterium sp. DJF_VR20 -6.59 1.00 0.23
Clostridium disporicum -6.33 1.00 0.19
Collinsella sp. CB20 -6.26 1.00 0.19
Ruminococcus gnavus -6.02 1.00 0.18
Bacteroides fragilis -5.90 1.00 0.18
Clostridium butyricum -5.90 1.00 0.18
Enterococcus sp. L2 -5.78 1.00 0.18
Prevotella intermedia -5.68 1.00 0.18
Clostridium glycolicum -5.29 0.99 0.20
Bacteroides sp. CJ78 -5.22 0.99 0.21
Collinsella aerofaciens -5.19 0.99 0.21
FEubacterium rectale -5.06 0.99 0.21
Bacteroides xylanisolvens -4.95 0.98 0.21
Clostridium hathewayi -4.86 0.98 0.22
Collinsella sp. HA6 -4.69 0.97 0.21
Turicibacter sanguinis -4.68 0.97 0.21
Clostridium sp. CJ66 -4.66 0.97 0.21
Prevotella sp. oral clone AO009 -4.65 0.97 0.21
Enterococcus gallinarum -4.59 0.96 0.21
Megasphaera sp. TrE9262 -4.53 0.96 0.20
Bacteroides ovatus -4.52 0.96 0.20
Clostridium difficile -4.30 0.95 0.19
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Table 8: Microbiome data case study: differentially abundant taxa with positive z-scores
indicating greater abundance in the children with moderate to severe diarrhea.
Most are well known pathogenic bacteria, e.g. Shigella spp. and E. coli. Pos-
terior probability that the z-score belongs to the non-null group is given for
each taxa. The dotted line highlights the difference between the genes flagged
as relevant by our method and the ones found with the locfdr model.

Taxon z-score p(K; = 1|data) Efron LocFdr
Escherichia coli 8.48 1.00 0.83
Streptococcus sp. C101 7.66 oo 0.70
Haemophilus haemolyticus 7.62 1.00 0.69
Streptococcus mitis 7.48 1.00 0.65
Erwinia chrysanthemi 7.18 1.00 0.58
Streptococcus sp. oral clone ASCE09 7.10 1.00 0.55
Enterobacter cloacae 6.87 1.00 0.49
Acinetobacter sp. SF6 6.56 1.00 0.40
Granulicatella sp. oral clone ASCG05 6.34 1.00 0.33
Streptococcus sp. oral clone ASCC04 6.18 1.00 0.28
Shigella boydii 5.93 1.00 0.20
Streptococcus sp. oral clone ASCCO1 5.82 1.00 0.17
Streptococcus peroris 5.81 1.00 0.17
Rothia mucilaginosa 5.76 1.00 0.15
Streptococcus oralis 5.75 1.00 0.15
Escherichia sp. oral clone SRH-30 5.58 1.00 0.11
Citrobacter freundii 5.58 1.00 0.11
Granulicatella adiacens 5.54 1.00 0.10
Streptococcus sanguinis 5.47 1.00 0.08
Escherichia albertii 5.24 1.00 0.03
Escherichia sp. EMB 210 5.08 1.00 0.01
Granulicatella elegans 5.04 1.00 0.00
Streptococcus pneumoniae 5.03 0.99 0.00
Fusobacterium nucleatum 5.03 1.00 0.00
Serratia marcescens 4.97 1.00 0.00
Streptococcus sp. oral strain T4-E3 4.86 0.99 0.00
Streptococcus sp. oral clone DP009 4.84 0.99 0.00
Shigella sonnei 4.79 0.99 0.00
Fusobacterium periodonticum 4.76 0.99 0.00
Neisseria sp. oral clone BP2-82 4.62 0.99 0.00
Actinobacillus pleuropneumoniae 4.59 0.99 0.00
Streptococcus parasanguinis 4.52 0.99 0.00
Streptococcus sp. C163 4.50 0.99 0.00
Fusobacterium sp. oral clone BS011 4.48 0.99 0.00
Haemophilus sp. oral clone BJ021 4.39 0.98 0.00
Streptococcus sp. oral clone BP1-49 4.25 0.98 0.00
Abiotrophia defectiva 4.24 0.98 0.00
Streptococcus sp. oral clone MCE7_144 37 4.19 0.98 0.00
Haemophilus influenzae 4.11 0.97 0.00
Campylobacter jejuni 4.11 0.97 0.00
Citrobacter sp. SVUB3 4.07 0.97 0.00

Enterobacter sp. CRRI 3 3.89 0.95 0.00




Web Appendix G: Interesting Biological Findings

Among the species which were identified by our method as having significantly less
abundance in MSD children, we found Prevotella species and Clostridium species (see
Table 1 in Web Appendix C). Prevotella spp. are common bacteria in the gut and are
commonly found in children from rural and underdeveloped areas [Di Paola et al., 2010]
as well as children whose diets predominantly consist of carbohydrates and fiber [Chen
et al., 2011]. Thus the severely decreased abundance of the Prevotella spp. is reasonable
in light of the gastrointestinal disruption the children experienced. As for the Clostridium
spp., it is well-known that C. difficile is a toxigenic bacteria in adults but it is also
found asymptomatically in large proportions in infants and neonates [Jangi and Lamont,
2010]. Another interesting species is Megasphaera, which was recently suggested for
reclassification to Clostridium [Yutin and Galperin) 2013]. Finally, Eubacterium rectale,
Bacteroides, and Faecalibacterium prausnitzii, have all been shown a marked reduction
in concentrations in patients affected by chronic idiopathic diarrhea [Swidsinski et al.,
2008].

Of the species identified as significantly more abundant in the MSD children, many of
them belong to the Streptococcus species. Some Streptococcus species are well known hu-
man pathogens causing conjunctivitis, respiratory infections and urinary tract infections.
Other species in the genus are opportunistic pathogens, meaning they are asymptomati-
cally present in healthy individuals but will flourish in individuals with weakened immune
systems such as the patients in this dataset. The pathogenic genus Shigella is present
and is well-known for causing dysentery. It has been suggested that the Shigella spp.
are closely related to another well-known pathogen, Escherichia coli [Lan and Reeves,
2002] which is also differentially abundant in these patients. A Granulicatella species
has also been identified as differentially abundant. However, these bacteria are usually
implicated in childhood infective endocarditis or infection of the heart.
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