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Bayesian hierarchical nonparametric models offer a convenient framework
for modeling nested data, where observations are organized into groups.
These priors jointly accommodate the dependence among groups and among
observations within the same group in a flexible way. Several recent instances
of such models have combined nested levels of Dirichlet processes and a com-
mon sequence of atoms, a formulation that allows for multi-layered partitions,
i.e., a simultaneous clustering of observations and groups. However, using
a common set of atoms can lead to a forced high prior correlation between
the generated random measures. This characteristic can cause shortcom-
ings in the clustering results and even biased density estimation. Extending
the nested process with more general stick-breaking specifications for the
weights alleviates these issues. Specifically, the proposed generalized Com-
mon Atoms Model enhances the flexibility of the dependence structure and
improves density estimation. Three notable instances, particularly useful for
practical applications, are discussed, and an efficient Gibbs sampler algo-
rithm for this novel nested mixture model is developed. Finally, posterior
results are validated with simulation studies and a real data application.
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1. Introduction
Nested designs represent the standard experimental framework for analyzing multicenter
data, where observations are organized into groups. Recently, Bayesian nonparametric
nested models have emerged as an effective approach for modeling these data, thanks
to their non-restrictive distributive assumptions, the possibility to borrow information
across groups, and the ability to account for within- and between-group variability.
Foundational contributions to this class of nonparametric priors are the Hierarchical
Dirichlet process (HDP, Teh, Jordan, Beal, & Blei, 2006) and the nested Dirichlet Pro-
cess (nDP, Rodríguez, Dunson, & Gelfand, 2008). These priors share a construction
based on nested levels of discrete random distributions. Despite the similar structure,
the way each level interacts with the others and the distributive assumptions of the
latent measures profoundly affect the processes’ realizations and, consequently, their
clustering properties. The nDP, in particular, is defined as a Dirichlet process (DP)
whose random atoms are discrete random probability measures, sampled independently
from another DP. Such a construction entails a simultaneous partition of groups and
observations, an appealing characteristic when modeling multicenter data. Successful
applications of the nDP can be found, for example, in Graziani, Guindani, and Thall
(2015); Rodríguez and Dunson (2014); Zuanetti, Müller, Zhu, Yang, and Ji (2018). How-
ever, recently, Camerlenghi, Dunson, Lijoi, Prünster, and Rodríguez (2019) showed how
the nDP, by construction, does not allow observational clusters to be shared across dif-
ferent distributional clusters, forcing the model, in some cases, to create more clusters
than needed or collapse different distributions together. To solve this issue, several ex-
tensions have been proposed (see, for example, Beraha, Guglielmi, & Quintana, 2021;
D’Angelo, Canale, Yu, & Guindani, 2023; Lijoi, Prünster, & Rebaudo, 2023), including
the Common Atoms Model (CAM, Denti, Camerlenghi, Guindani, & Mira, 2023). The
CAM mimics the structure of the nDP but introduces a key difference: the random mea-
sures used as atoms are no longer independent realizations of a DP but rather random
distributions based on a shared set of atoms. This modification enables clustering obser-
vations across groups, even when they are assigned to different distributional clusters.
Nonetheless, because of such a structure, the CAM induces a high prior correlation be-
tween the generated random measures. This constraint can lead to borrowing too much
information between groups, resulting in biased inference, especially of the posterior
density estimates. A solution to this problem has been proposed in D’Angelo and Denti
(2024), where the authors suggest a hybrid approach, adopting a finite (parametric)
mixing measure for the observational layer of the model. On the contrary, in this pa-
per, we investigate fully nonparametric specifications, exploring how the CAM’s nested
framework can be extended with beta stick-breaking (SB) process priors (Ishwaran &
James, 2001), and how different distributional assumptions can dramatically impact the
flexibility of the induced random measures.

The rest of this paper is organized as follows. In Section 2, we introduce the framework
and provide a general expression for the correlation of nested random measures with
common atoms. In Section 2.2, we derive closed-form expressions for three special cases:
the Pitman-Yor process (Pitman & Yor, 1997), the two-parameter beta process (Ishwaran
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& Zarepour, 2000), and the atom-skipping process (Bi & Ji, 2023), discussing the pros
and cons of the different specifications. In Section 3, we illustrate the use of the proposed
prior as a mixing measure in nonparametric mixtures, and we derive an efficient blocked
Gibbs sampler algorithm to perform posterior inference. Then, in Section 4, we focus
on models characterized by Dirichlet process distributional weights and investigate the
posterior performances of different processes for the observational weights on simulated
data. Finally, we compare the flexibility of our proposed model with the standard CAM
on the Collaborative Perinatal Project study, a benchmark dataset for nested clustering.
Section 5 discusses possible future research directions suggested by these findings. All
the proofs are deferred to the Supplementary Material.

2. The generalized nested common atoms model
2.1. Definition and general results
Consider a nested design where the data are divided into J groups, each containing
Nj measurements. Specifically, denote the data as y = (y1, . . . ,yJ), where yj =
(y1,j , . . . , yNj ,j) is the sample in the j-th group, for j = 1, . . . , J . The generic obser-
vation yi,j , for i = 1, . . . , Nj and j = 1, . . . , J , takes values in a Polish space X endowed
with the respective Borel σ-field X . The generalized Common Atoms Model (geCAM)
assumes that each sample is generated by a group-specific distribution Gj . The group-
specific random measures Gj ’s are sampled from an almost surely discrete distribution
Q, defined over the space of probability distributions on X . In formulas, we write, for
j = 1, . . . , J ,

y1,j , . . . , yNj ,j | Gj ∼ Gj , Gj | Q ∼ Q,

and Q =
∑
k≥1

πkδG∗
k
. (1)

We assume a common atoms structure for the distributional atoms G∗
k, i.e.,

G∗
k =

∑
l≥1

ωl,kδθ∗l , (2)

where, crucially, {θ∗l }l≥1 is a sequence of i.i.d. common observational atoms, ran-
domly sampled from a non-atomic base measure H defined on (X,X ). The sequences
π = {πk}k≥1 and ωk = {ωl,k}l≥1, for k ≥ 1, are independent, and they are referred
to as distributional and observational weights, respectively. We assume a general for-
mulation for the distributions of these weights, denoting with L(π) the law of π, and
with L(ωk) the common law of the ωk’s, for k ≥ 1. We will refer to the model de-
fined in Equations (1) and (2) as the geCAM with laws L(π) and L(ωk), and write
Q ∼ geCAM(L(π),L(ωk),H).

The discrete nature of Q and the G∗
k’s allows for the possibility of ties between distri-

butions and between observations, hence inducing a distributional and an observational
partition, respectively. The former is guaranteed by noticing that P

[
Gj = Gj′

]
> 0,

for j, j′ = 1, . . . , J ; while the latter follows since P
[
yi,j = yi′,j′

]
> 0, for i = 1, . . . , Nj ,
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i′ = 1, . . . , Nj′ and j, j′ = 1, . . . , J . The following proposition shows that, under this
general construction, the correlation between two probability measures Gj and Gj′ is
related to these two co-clustering probabilities and can be expressed as a function of the
distributional and observational weights.

Proposition 2.1 Let Gj , Gj′ | Q ∼ Q, with j ̸= j′, and Q ∼ geCAM(L(π),L(ωk),H).
Then, the correlation between Gj and Gj′ is given by

ρj,j′ := Corr(Gj , Gj′)

= 1−
(
1− P

[
Gj = Gj′

] )(
1−

P
[
yi,j = yi′,j′ | Gj ̸= Gj′

]
P
[
yi,j = yi′,j′ | Gj = Gj′

])
= 1− (1− q1) (1− q2) ,

(3)

where q1 = P
[
Gj = Gj′

]
=
∑

k≥1 E
[
π2k
]

and

q2 =
P
[
yi,j = yi′,j′ | Gj ̸= Gj′

]
P
[
yi,j = yi′,j′ | Gj = Gj′

] = ∑
l≥1 E [ωl,k]

2∑
l≥1 E

[
ω2
l,k

] .
Moreover, the correlation is always non-negative.

Notice that Corr(Gj , Gj′) is short for Corr(Gj(A), Gj′(A)), with A a generic Borel set
A ∈ X . However, we can suppress the dependence on the specific set since the correlation
is constant for any choice of A. For this reason, we follow the indications of Lijoi et al.
(2023) and focus on ρj,j′ as a measure of the overall dependence between Gj and Gj′ .
From Equation (3) we see that ρj,j′ can be expressed as a difference between the upper
bound 1 and a product of two quantities. The first is (1 − q1) = P

[
Gj ̸= Gj′

]
, whose

interpretation is trivial. The second quantity, (1− q2) =
∑

l≥1 V ar(ωl,k)/
∑

l≥1 E
[
w2
l,k

]
,

is less straightforward, and the leading cause of the poor flexibility induced, for example,
by the Dirichlet process prior used in the definition of the CAM proposed by Denti,
Camerlenghi, et al. (2023) (see Section 2.2.1). Hence, in the following, we will study the
effect on q2 of different SB specifications for ωk.

Before moving to the specific cases, one last remark is useful. Proposition 2.1 expresses
the correlation as a function of the conditional probability of observational ties. However,
it is immediate to explicitly link ρj,j′ to the marginal probability as well, as stated in
the following corollary.

Corollary 2.2 Let yi,j | Gj ∼ Gj and yi′,j′ | Gj′ ∼ Gj′, with j ̸= j′, be two realiza-
tions from two random probability measures sampled from Q ∼ geCAM(L(π),L(ωk),H).
Then,

ρj,j′ =
P
[
yi,j = yi′,j′

]∑
l≥1 E

[
ω2
l,k

] . (4)
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Equations (3) and (4) hold for generic common atoms models, as long as the laws L(π)
and L(ωk) are valid distributions for modeling the mixture weights. In the following, we
discuss the popular class of SB priors based on independent sequences of beta random
variables (Ishwaran & James, 2001).

2.2. The impact of stick-breaking priors on the prior correlation
We begin by recalling the definition of SB process using the construction with generic
beta random variables of Ishwaran and James (2001). As will be discussed later, the
law L(π) has a limited impact on the nested prior, whose behavior is ultimately defined
by L(ωk). Hence, we focus on the observational weights and assume that all sequences
ωk’s are identically distributed according to a beta SB process,

ωl,k = ul,k
∏
q<l

(1− uq,k), with ul,k ∼ Beta(al, bl) for l, k ≥ 1, (5)

which is equivalent to writing ωk ∼ SB(a, b) for all k ≥ 1. Here, both a = {al}l≥1

and b = {bl}l≥1 are positive-valued sequences such that
∑

l≥1 log(1 + al/bl) = +∞ (see
Lemma 1 in Ishwaran & James, 2001). Under the general specification in Equation (5),
we have that

E [ωl,k]
2 =

(
al
∏l−1

q=1 bq∏l
q=1(aq + bq)

)2

and E
[
ω2
l,k

]
=

al(al + 1)
∏l−1

q=1 bq(bq + 1)∏l
q=1(aq + bq)(aq + bq + 1)

.

This framework encompasses several popular nonparametric priors. In the next sub-
sections, we explore specific instances of SB priors and discuss their impact on the
correlation among nested random measures.

2.2.1. The Dirichlet process

The most popular SB prior was introduced as a constructive definition of the DP (Sethu-
raman, 1994). The weights of a DP with concentration parameter β are obtained by
setting al = 1 and bl = β for l ≥ 1 in Equation (5), i.e., assuming that ωk ∼ SB(1, β) for
all k ≥ 1. The SB(1, β) prior specification for the observational weights stands at the
basis of the original CAM, and its effects have been studied in Denti, Camerlenghi, et
al. (2023). Here, we recall their result in the following Corollary as a benchmark.

Corollary 2.3 Let Gj , Gj′ | Q ∼ Q, with j ̸= j′, and Q ∼ geCAM(L(π),SB(1, β),H).
Then,

ρj,j′ = 1− (1− q1)
β

1 + 2β
. (6)

We remark that, in Equation (6), (1 − q2) = β/(1 + 2β) ∈ (0.5, 1), hence ρj,j′ falls
within the same interval. This limited range of attainable correlations stems from the
interaction between the stochastic ordering of the SB construction and the implicit
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Figure 1: Correlation for varying parameters of the observational PYP prior. Each panel
corresponds to a different PYP specification of the distributional weights.

ordering of the common atoms across the different latent distributions G∗
k’s. Specifically,

P [yi,j = θ∗l ] = E [ωl,k] = βl−1/(1+β)l is geometrically decreasing in l and, crucially, does
not depend on k. In other words, atoms appearing earlier in the sequence {θ∗l }l≥1 are
highly favored in expectation, and this relation holds across all the random measures.
Adopting a more general SB specification can alleviate the implicit ordering problem.

2.2.2. The Pitman-Yor process

An intuitive approach to address the implicit ordering problem is to adopt a process
that exhibits a slower decay of the weights compared to the DP. One such process is the
Pitman-Yor process (PYP, Pitman & Yor, 1997), which is renowned for its power-law
tails behavior (Ghosal & van der Vaart, 2017). While P [yi,j = θ∗l ] is still decreasing in
l, the heavy tails of the PYP lead to higher variance and more diverse realizations. To
obtain a PYP from the general SB construction in Equation (5), we set al = 1 − σ
and bl = ϑ + lσ. In the following, this process will be denoted as PYP(ϑ, σ), with the
parameter σ being referred to as the discount parameter. Here, we consider σ ∈ (0, 1)
and ϑ > 0. Note that when σ = 0, we obtain the DP as a special case. If we specify
Proposition 2.1 to the case of a PYP, we get the following corollary.

Corollary 2.4 Let Gj , Gj′ | Q ∼ Q, with j ̸= j′, and Q ∼ geCAM(L(π),PYP(ϑ, σ),H).
Then,

ρj,j′ = 1− (1− q1)

[
1− (1− σ)(1 + ϑ)

ϑ2
S2
σ,ϑ

]
, (7)

where S2
σ,ϑ =

∑
l≥1 ζ

2
l (σ, ϑ) and ζl(σ, ϑ) = ϑ̃[l]/ϑ̂[l]. In the last expression, ϑ̃ = ϑ/σ and

ϑ̂ = (ϑ+ 1)/σ, while a[l] =
∏l−1

s=0(a+ s) indicates the ascending factorial.

The expression in Equation (7) does not have a simple interpretation, but it is straight-
forward to evaluate numerically. Figure 1 shows the resulting correlation for varying
parameters of the prior on the observational weights. Each panel reflects a different
PYP specification of the distributional weights π. In the Supplementary Material, we
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report additional heatmaps depicting the evolution of the term (1− q2), independently
of q1. Since now (1−q2) ∈ (0, 1) also ρj,j′ can attain values in (0, 1). The tail behavior of
the process is governed by the discount parameter σ, and thus, the correlation is heavily
affected by its value. Larger values of σ make ties less likely to occur a priori, redis-
tributing the probability mass across numerous atoms. Conversely, the parameter ϑ has
a negligible impact unless σ is close to zero. Upon these considerations, the PYP emerges
as a valuable choice for the law of the observational weights in the geCAM, especially
when considering large values of the discount parameter. However, it’s worth noting
that this choice may affect the practicality of posterior computation. For instance, as σ
approaches one, many conditional samplers for nonparametric mixtures become unfea-
sible, necessitating reliance on more sophisticated sampling schemes (Canale, Corradin,
& Nipoti, 2022).

2.2.3. The two-parameter beta process

A computationally simpler alternative is the two-parameter beta process (2PBP, Ish-
waran & Zarepour, 2000), obtained by setting al = s1 > 0 and bl = s2 > 0 in (5):
we will denote this process as 2PBP(s1, s2). Here, the decay of the weights is again
geometric, since P [yi,j = θ∗l ] = s1s

l−1
2 /(s1 + s2)

l, but, unlike the DP, there are two free
parameters controlling the tail behavior. We can establish the following:
Corollary 2.5 Let Gj , Gj′ | Q ∼ Q, with j ̸= j′, and Q ∼ geCAM(L(π), 2PBP(s1, s2),H).
Then,

ρj,j′ = 1− (1− q1)

(
1− s1(s1 + 1 + 2s2)

(s1 + 2s2)(s1 + 1)

)
.

Notably, a lower correlation is achieved when s1 approaches zero: small values of s1 lead
to the creation of sticks with negligible mass, inducing a slow decay rate. Specifically,
for s2 > 0, lims1→0 ρj,j′ = q1 ∈ (0, 1), proving the 2PBP as a valid solution to improve
the flexibility of the prior. In Figure 2, we present the correlation as a function of the
parameters s1 and s2 at the observational level, assuming again different specifications
for π.

A special case of this process arises when we assume s1 = s2 = s < 1, which corre-
sponds to a horseshoe-shaped beta random variable (Carvalho, Polson, & Scott, 2010).
In this case, each ωl,k assumes with high probability either a value very close to 0 (hence,
assigning negligible mass to the atom θ∗l ) or very close to 1 (assigning most of the mass
to the atom). The correlation is then given by ρj,j′ = 1 − 2(1 − q1)/(3(s + 1)), and
lims→0 ρj,j′ = (1 + 2q1)/3 ∈ (1/3, 1). Thus, with just one free parameter to control the
tail behavior, we revert to a correlation that is lower-bounded by 1/3, representing only
a slight improvement compared to the DP. Nonetheless, the above reasoning suggests
an ingenious way to make the model more flexible. Indeed, it emerges that a key factor
for reducing the correlation lies in the ability to randomly “skip” some atoms in the
common sequence by assigning null mass in a non-deterministic order across various
random measures. This behavior can be achieved by the atom-skipping process of Bi
and Ji (2023), which we discuss in the following paragraph.
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Figure 2: Correlation under the 2PBP prior. Each panel corresponds to a different 2PBP
specification of the distributional weights.

2.2.4. The skip-breaking process

The atom-skipping process was recently proposed by Bi and Ji (2023) to extend the
HDP to allow for the presence of group-specific observational clusters. This is achieved
through a zero-augmented beta distribution for the SB variables, similar to the Quasi-
Bernoulli SB process of Zeng, Miller, and Duan (2023). We apply the same idea to
reduce correlation in the geCAM, extending the 2PBP with the following spike-and-slab
formulation:

ul,k ∼ p δ0 + (1− p)Beta(s1, s2), for l, k ≥ 1. (8)

With this definition, ul,k can assume the value zero with probability p, resulting in the
omission of the l-th atom from the common sequence {θ∗l }l≥1. To stress the mean-
ing of this construction, in our nested setting, we refer to SB weights generated ac-
cording to Equation (8) as distributed following a skip-breaking process, denoted with
SKBP(s1, s2, p). Notice that this specification is equivalent to a two-parameter beta pro-
cess where the first hyperparameter s1 randomly degenerates to zero with probability p
since Beta(0, s2)

(d)
= δ0. In other words, we can rewrite Equation (8) in hierarchical form,

for l, k ≥ 1, as:

ul,k | xl,k ∼ Beta(s1 · xl,k, s2) and xl,k ∼ Bern(1− p). (9)

The additional parameter p ∈ [0, 1) grants more control over the evolution of the weights,
which is now given by

P [yi,j = θ∗l ] = (1− p)s1
(s1p+ s2)

l−1

(s1 + s2)l
.

Therefore, when p = 0, we revert to the 2PBP, while p→ 1 leads to a sequence of zeros.
It is possible to prove the following:

Corollary 2.6 Let Gj , Gj′ | Q ∼ Q, with j ̸= j′, and Q ∼ geCAM(L(π), SKBP(s1, s2, p),H).
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Figure 3: Correlation under the SKBP prior with p = 0.25 (top row) and p = 0.50
(bottom row). Each panel corresponds to a different SKBP specification of
the distributional weights.

Then,
ρj,j′ = 1− (1− q1)

(
1− (1− p)s1(s1 + 2s2 + 1)

((1 + p)s1 + 2s2)(s1 + 1)

)
.

Figure 3 displays the correlations for different specifications of π and p. As the proba-
bility of a skip approaches 1, the concentration parameters can assume a broader range
of values while maintaining low correlation. In other words, the SKBP enhances the
flexibility of the 2PBP, concentrating the mass only on active atoms and discarding the
superfluous ones.

The improvement introduced by the random skipping is well demonstrated if we
consider the special case where s1 = s2 = s, as we did in the previous paragraph.
This choice leads to (1 − q2) = 2(1 + p + 2ps)/((3 + p)(s + 1)), and lims→0 ρj,j′ =
(1 − p + 2q1(p + 1))/(3 + p) ∈ (0, 1). The additional parameter p in the latter quan-
tity extends the 2PBP(s, s) and enables the prior to attain the full range of possible
correlations. Therefore, the SKBP offers an effective integration of flexibility and com-
putational tractability.
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2.2.5. Combining different processes

Notice that, in Figures 1, 2, and 3, we have assumed the same process on both π and the
ωk’s. However, we remarked on how the flexibility of the overall process is essentially
defined by the distribution assumed for the observational weights, affecting the term
(1− q2). The different roles of the two sequences of weights hence suggest that a mixed
approach, where π and the ωk are assigned different prior distributions, could be a valid
strategy. Figures S2, S3, S4, and S5 of the Supplementary Material investigate this
solution, confirming how the process on the distributional weights has a limited impact
on the correlation support. Thus, its choice can be driven by other considerations (e.g.,
the computational tractability).

We can conclude that one should avoid a DP prior on the observational weights unless
it is strongly motivated by the specific problem under consideration (as, for example,
in the application of Denti, Camerlenghi, et al., 2023). This choice indeed prevents the
resulting correlation from escaping the interval (0.5, 1), regardless of the process that
drives the distributional weights. However, thanks to its computational tractability, the
DP still represents a convenient prior for the distributional weights, as long as it is
combined with a more flexible prior on the observational ones.

3. Posterior inference for generalized common atoms mixture
models

With continuous measurements, using the discrete distributions Gj ’s to model the data is
not appropriate, and it is customary to convolute them with a continuous kernel f(· | θ).
Hence, in the following, we assume that

yi,j | pj ∼ pj , with pj =

∫
Θ
f(· | θ)dGj(θ),

for i = 1, . . . , Nj and j = 1, . . . , J . In this section, we devise a blocked Gibbs sampler
algorithm for performing posterior inference in mixture models driven by a geCAM
prior. In particular, we keep a general formulation on the distributional weights, while
we explicitly state the case of a skip-breaking process on the observational weights. The
other processes mentioned in Section 2 can be easily recovered by setting p = 0 and
carefully choosing the appropriate values for the sequences {s1,l}l≥1 and {s2,l}l≥1.

Before detailing the algorithm, it is useful to specify the model with the augmented
formulation involving the random variables {Sj}Jj=1 and {{Mi,j}

Nj

i=1}Jj=1 that indicate
the distributional and observational cluster memberships, respectively. Hence, (Gj |
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Sj = k) = G∗
k, and (θi,j |Mi,j = l) = θ∗l . The model can be expressed as

yi,j |Mi,j , {θ∗l }l≥1 ∼ f(yi,j |θ∗Mi,j
),

p(Mi,j |Sj ,ω) =
∑
l≥1

ωl,Sj
δl(·), p(Sj |π) =

∑
k≥1

πkδk(·),

πk = vk
∏
g<k

(1− vg), with vk ∼ Beta(aDk , b
D
k ),

ωl,k = ul,k
∏
q<l

(1− uq,k), with ul,k ∼ Beta(s1,l · xl,k, s2,l),

xl,k | p ∼ Bern(1− p), and θ∗l
i.i.d.∼ H,

(10)

where the vectors {aDk }k≥1 and {bDk }k≥1 indicate the parameters of the beta laws gov-
erning the distributional stick-breaking processes. Finally, p can be set to a fixed value
or assigned an additional prior level, p ∼ Beta(b01, b

0
2). We implement a blocked Gibbs

sampler, relying on truncating the processes to K distributional weights and L observa-
tional weights (Ishwaran & James, 2001; Lijoi et al., 2023; Rodríguez et al., 2008). The
steps are outlined in Algorithm 1. Notice that we adopt a collapsed Gibbs sampler to
improve mixing: in particular, the full conditional distribution in step 2 is obtained by
marginalizing over xl,k. Similarly, we integrate out Mi,j in step 3.

Algorithm 1: Blocked Gibbs sampler for geCAM mixture models.
1. For each k = 1, . . . ,K, compute mk =

∑J
j=1 1{Sj=k}. Then, sample vk from a

Beta(ak +mk, bk +
∑K

g=m+1 mg) distribution.

2. For each k = 1, . . . ,K and l = 1, . . . , L, compute s∗1,l = s1,l + nl,k and s∗2,l = s2,l +
∑L

q=l+1 nq,k,
where nl,k =

∑J
j=1

∑Nj

i=1 1{Sj=k ∩ Mi,j=l}.
Then, set ul,k equal to zero with probability

p̃l,k =
p1{nl,k=0}

p1{nl,k=0} + (1− p)B(s∗1,l, s
∗
2,l)/B(s1,l, s2,l)

,

where B(·, ·) is the beta function.
Otherwise, sample a new value for ul,k from a Beta(s∗1,l, s

∗
2,l) distribution.

3. For each j = 1, . . . , J , sample Sj from a categorical distribution with K levels,
where

P [Sj = k | · · · ] = πk

Nj∏
i=1

(
L∑

l=1

ωl,kf(yi,j ; θ
∗
l )

)
.

4. For each j = 1, . . . , J and i = 1, . . . , Nj , sample Mi,j from a categorical
distribution with L levels, where

P [Mi,j = l | · · · ] = ωl,Sjf(yi,j | θ∗l ).

5. For each l = 1, . . . , L, sample θ∗l from the corresponding full conditional distribution
p(θ∗l | · · · ) ∝ h(θ∗l )

∏
i,j:Mi,j=l f(yi,j | θ∗l ), where h is the density of the measure H.

6. If p is random, sample a new value from a Beta(b01 + n0, b
0
2 +K · L− n0) distribution, where

n0 =
∑L

l=1

∑K
k=1 1{ul,k=0}.
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Algorithm 1 is general and can be easily adjusted to all the discussed beta stick-
breaking priors. However, it is useful to remark on some technical issues. The truncation
on which the blocked Gibbs sampler relies should not negatively affect the accuracy of
the posterior estimates. This aspect becomes critical when considering heavy-tailed
processes, such as the PYP. Thus, it is important to carefully assess the adequacy of
the truncation level (for example, by keeping track of the highest allocated component
throughout the MCMC iterations) and, possibly, increase the truncation parameters.
Of course, this does not come without costs: allocating larger matrices induces higher
computing time and larger memory allocation. Hence, the choice of the prior process
should carefully balance good theoretical properties and computational efficiency. For
this reason, and in light of Section 2.2.5, in the simulation study, we focus on a geCAM
specification driven by a DP on the distributional weights and investigate the 2PBP and
SKBP on the observational weights.

4. Illustrations
We apply the geCAM mixture model introduced in the previous section to univariate
grouped data to investigate its posterior properties. First, we apply the proposed model
to a synthetic dataset to analyze the impact on the accuracy of the posterior density
estimate compared to a standard CAM prior. We consider a simple data-generating
mechanism to better investigate the limitations of the CAM and the impact of more
flexible SB priors. In the Supplementary Material, we report a second experiment with
more complicated subpopulation distributions, which resulted in similar conclusions.
Then, we examine its performance on a subset of the data from the Collaborative Peri-
natal Project study (Hardy, 2003), comprising 2313 observations divided into 12 groups.

All the experiments were run on an Ubuntu system with Intel Core i7-14700K proces-
sor, with 32 gigabytes of memory. The code used to perform the experiments, written
both in R and C++, is openly available at the GitHub repository Fradenti/geCAM.

4.1. Synthetic data
We consider a simple setting comprising data generated from two possible distributions.
Each distribution is Gaussian with a different mean, specifically N(−5, 1) and N(5, 1),
and the probability of being assigned to each of the subpopulations is 0.5. Let us
denote the true density functions of subpopulation k = 1, 2 with p∗k(y). Then, we
sample J ∈ {2, 4, 6} groups comprising Nj = n ∈ {10, 25, 50} independent observations.
Considering all the possible combinations between the values of J and n results in 9
simulation scenarios.

We set aDk = bDk = 1 for k ≥ 1 considering a DP prior with unitary concentration
parameter for the distributional weights, and study the effect of different processes on the
observational ones. Specifically, we consider two instances of SB priors: the skip-breaking
process SKBP(1, 1, p) and the two-parameter beta process 2PBP(s, s). To assess the
impact of the prior parameters, for the SKBP we both fix p ∈ {0, 0.25, 0.5, 0.75} and
consider a further hyperprior, p ∼ Beta(1, 1); for the 2PBP, we vary s ∈ {0.1, 0.5, 1}.
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Notice that the cases p = 0 and s = 1 correspond to a standard CAM prior, which will
serve as a benchmark. Finally, to complete the prior specification, we assume Normal
kernels, f(y | θ∗l ) = ϕ(y | µ∗l , σ2

∗
l ), and a conjugate Normal-inverse Gamma base measure,

i.e., µ∗l | σ2
∗
l ∼ N

(
m0, σ

2∗
l /κ0

)
and σ2

∗
l ∼ IG(γ0, λ0).

We simulate 50 independent datasets, and on each of them, we estimate the mixture
models running 10,000 MCMC iterations, discarding the first half as burn-in. Given the
simplicity of the data-generating mechanism, we truncate the processes at L = 20 and
K = 10. Notice that the Gibbs sampler to perform posterior inference under a 2PBP
prior can be obtained by setting p = 0 in Algorithm 1.

We compare the models by focusing on the accuracy of the posterior density estimate.
Denote with T the number of MCMC iterations and consider a generic group j. For each
of the 50 replications, we compute the point-wise posterior mean of the group-specific
density on a grid of approximately 2000 points for y ∈ [−10, 10] as

p̂j(y) =
T∑
t=1

1

T

L∑
l=1

ω
(t)

l,S
(t)
j

ϕ(y | (µ∗l , σ2
∗
l )

(t)). (11)

Thanks to the simplicity of the simulation scenario, the distributional partition is al-
ways correctly recovered, hence p̂j is an estimate of the true corresponding distribution
p∗k = p∗Sj

. Moreover, the quantity in (11) sums over all the observational mixture com-
ponents, hence it does not suffer from the label-switching problem that characterizes
conditional algorithms. Figure 4 shows examples of such quantity computed for the two
subpopulations (displayed by row) in the first simulation scenario (n = 10, J = 2). Each
panel corresponds to a different prior process: the standard CAM, the skip-breaking pro-
cess SKBP(1, 1, 0.5) and the two-parameter beta process 2PBP(0.5, 0.5). We report the
posterior density estimate p̂j(y) computed on the 50 datasets (gray lines), their overall
average (blue line), and the ground truth (black line). The density estimate relative to
the CAM clearly shows the presence of a spurious mode, which should not be detected.
The issue is greatly alleviated by the 2PBP and, even more, by the SKBP. This behavior
provides an intuition for the general results discussed in the next paragraph, obtained
using formal measures of fit. Plots displaying all the estimated posterior densities under
every scenario are reported in the Supplementary Material.

To formally assess the accuracy of the posterior estimate in (11) for the various models,
we evaluate three different metrics of discrepancy between the true density of the k-
th subpopulation p∗k, and the posterior density estimate p̂j of the corresponding j-th
group. Specifically, we compute the Jensen-Shannon divergence (JS; Lin, 1991), the total
variation (TV) distance, and the Kullback-Leibler (KL) divergence. Although they are
all measures of discrepancy between distributions, they highlight different aspects. The
JS divergence (defined as JSDj(p

∗
k || p̂j) = 0.5 (KL(p∗k || R) + KL(p̂j || R)) , with R =

0.5(p̂j + p∗k)) and TV distance are symmetric measures, hence they provide an intuition
about the overall discrepancy between the true and estimated density. Differently, the
KL divergence weights unevenly different types of errors. Specifically, we consider the
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Figure 4: Posterior density estimate of group 1, when J = 2 and n = 10. The gray curves
show the mean of the posterior densities in the 50 replications, and their point-
wise average is marked in blue. The black lines display the true density. The
left panels correspond to the CAM, the central and right panels correspond
to geCAMs embedded with SKBP(1, 1, 0.5) and 2PBP(0.5, 0.5), respectively.
The rows reports the results by subpopulations.

Kullback-Leibler divergence KL(p∗k || p̂j), defined as

KL(p∗k || p̂j) =
∫
p∗k(y) log

p∗k(y)

p̂j(y)
dy. (12)

The divergence in (12) is carefully chosen so it quickly grows in all regions of the sup-
port in which p∗k(y) is near zero unless p̂j(y) is also close to zero (Bishop, 2006). This
characteristic is particularly compelling when evaluating mixture models, as it can be
employed to emphasize the creation of spurious modes. The results for the JS divergence
and TV distance criteria are reported in Figures S6 and S7 of the Supplementary Mate-
rial. The discrepancy between the estimate and the ground truth is consistently larger
for the CAM compared to more general specifications, although the difference is small.
Hence, these plots suggest that the CAM has slightly more difficulties in estimating the
posterior density compared to other formulations. Still, they do not provide an intuition
about why this happens. We get a more complete picture by additionally looking at
the KL divergence, presented in Figures 5 and 6. These figures show the results for the
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Figure 5: Distributions of the KL divergence over the 50 replications for a geCAM em-
bedded with a SKBP(1, 1, p) process, for different specifications of p. The
standard CAM is obtained for p = 0, while the rightmost boxplot of each
panel corresponds to a random p ∼ Beta(1, 1). Each panel corresponds to a
simulation scenario.

SKBP and the 2PBP, respectively. Each panel corresponds to a simulation scenario,
and we study the distribution of the KL divergence for varying prior parameters. We
computed the KL divergences separately for each subpopulation and averaged them to
obtain a single measure. Each boxplot represents the distribution of these averages over
the 50 replications. Here, the performances of the CAM get significantly worse. Because
of the peculiarities of the KL divergence, we have a confirmation that the cause of the
CAM’s less accurate posterior density is the creation of spurious modes (i.e., it estimates
a large density in regions where the true density is actually close to zero). We remark
that the two subpopulations are designed to be very simple and well-separated. Nev-
ertheless, even in this straightforward case, the accuracy of the CAM is affected by its
rigid structure. The results for the 2PBP show an improvement, especially for s = 0.10.
However, the SKBP has the best performance overall, even for small p.

Lastly, to assess the accuracy of the proposed sampling algorithm, we investigate the
approximation arising from truncating the process to a finite number of components.
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Figure 6: Distributions of the KL divergence over the 50 replications for a geCAM em-
bedded with a 2PBP(s, s), for different specifications of s. The standard CAM
is obtained for s = 1. Each panel corresponds to a simulation scenario.

Adopting heavy tails for the mixing weights can lead to allocating atoms that appear
later in the sequence, as already discussed in Section 2.2 for the PYP case and at the
end of Section 3. Hence, it is important to evaluate if truncating the process is feasible
without causing a loss of accuracy. To monitor this aspect, we compute the number of
estimated distributional (K∗) and observational (L∗) clusters, and the maximum values
of the distributional (S̄) and observational (M̄) labels. Table 1 reports the average
and the standard deviation of these metrics computed across the 50 replications for the
extreme cases n = 10, J = 2, and n = 50, J = 6. The complete tables are available as
Supplementary Material. The estimates of the number of clusters are satisfactory and
consistent across the scenarios; the maxima of the cluster labels are never close to the
upper bounds L and K, suggesting that such truncations are not affecting the posterior
estimate of the process.

4.2. Application to the Collaborative Perinatal Project dataset
The Collaborative Perinatal Project (CPP) is a broad epidemiological study conducted
in the U.S. from 1959 to 1974 to investigate complications during pregnancy and birth
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SKBP(1, 1, p)

p n J K∗ L∗ S̄ M̄

0 10 2 2.000 (0.000) 2.564 (0.210) 3.453 (0.098) 2.998 (0.345)
0.25 10 2 2.000 (0.000) 2.669 (0.235) 3.488 (0.101) 3.919 (0.499)
0.5 10 2 2.000 (0.000) 2.729 (0.244) 3.488 (0.163) 5.623 (0.716)
0.75 10 2 2.000 (0.000) 2.698 (0.234) 3.453 (0.143) 9.011 (1.379)
Beta 10 2 2.000 (0.000) 2.677 (0.242) 3.471 (0.140) 6.770 (1.717)

0 50 6 2.053 (0.014) 2.922 (0.289) 2.494 (0.291) 3.371 (0.378)
0.25 50 6 2.067 (0.019) 3.094 (0.340) 2.645 (0.325) 4.371 (0.970)
0.5 50 6 2.043 (0.020) 3.397 (0.349) 2.625 (0.457) 7.355 (1.961)
0.75 50 6 2.021 (0.010) 3.281 (0.299) 2.528 (0.323) 10.349 (1.750)
Beta 50 6 2.030 (0.018) 3.141 (0.335) 2.551 (0.387) 9.395 (3.716)

2PBP(s, s)

s n J K∗ L∗ S̄ M̄

1.0 10 2 2.000 (0.000) 2.558 (0.207) 3.463 (0.094) 2.993 (0.340)
0.5 10 2 2.000 (0.000) 2.383 (0.175) 3.460 (0.096) 2.874 (0.330)
0.2 10 2 2.000 (0.000) 2.135 (0.087) 3.464 (0.081) 3.022 (0.607)

1.0 50 6 2.058 (0.013) 2.909 (0.270) 2.581 (0.321) 3.347 (0.371)
0.5 50 6 2.171 (0.030) 2.596 (0.282) 2.798 (0.232) 2.959 (0.420)
0.2 50 6 2.305 (0.179) 2.493 (0.290) 3.001 (0.326) 4.980 (1.805)

Table 1: Average and standard deviation (across the 50 replications) of the number of
estimated distributional and observational clusters (K∗, L∗), and of the maxi-
mum value of the distributional and observational labels (S̄, M̄).

outcomes. We consider a subset of this large data repository, which comprises the
gestational age and weight at birth of 2313 newborns collected from 12 different hospitals.
Moreover, to assess the effect of possible risk factors on the health of babies, it contains
information about the mothers’ smoking habits and the concentration level in maternal
serum of DDE, a toxic chemical compound of the pesticide DDT, known to adversely
impact the health of the babies (Longnecker, Klebanoff, Zhou, & Brock, 2001). The
data are available in the R package BNPmix (Corradin, Canale, & Nipoti, 2021) and have
been analyzed, for example, in Canale et al. (2022) and Lijoi et al. (2023).

We focus on the distribution of the weight at birth for both smoking and non-smoking
women, and we fit a Gaussian mixture driven by a geCAM prior embedded with a
SKBP(1, 1, 0.5) for the observational weights, and a DP with concentration parameter
α = 1 on the distributional ones. Again, we consider conjugate normal inverse-gamma
prior distributions, and we set m0 equal to the overall sample mean, κ0 = 0.1, γ0 = 1,
and λ0 = 4. We truncate the processes at L = 50 and K = 30. We run the MCMC
algorithm outlined in Section 3 for 20,000 iterations, discarding the first half as burn-in.
For comparison, we also fit the CAM to the data, under the same conditions. In the
Supplementary Material, we report the MCMC traceplots for the quantities K∗, L∗, S̄,
and M̄ , as defined in the previous section. The plots suggest that, for both models,
the truncation levels do not affect the accuracy of the estimates since the number of
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Figure 7: Posterior similarity matrices computed across the 12 groups under the geCAM
with SKBP on the observational weights (left panel), and the standard CAM
(right panel).

occupied clusters is always smaller than the upper bound of available components. Each
run took approximately 3 minutes to complete.

We computed a point estimate of the partitions of observations and groups by mini-
mizing the variation of information criterion (Dahl, Johnson, & Müller, 2022; Wade &
Ghahramani, 2018). We estimated two distributional clusters (DCs) using the geCAM,
while the CAM found three DCs, isolating two hospitals. The posterior similarity ma-
trices between the 12 groups computed under the two model specifications are displayed
in Figure 7. While the one obtained with the geCAM clearly shows the presence of two
well-distinct clusters of hospitals, the CAM’s partition is more nuanced.

In Figure 8 we show the histograms of each hospital, together with the posterior den-
sity estimates. The estimates under the CAM are shown with solid blue lines (in three
different shades, corresponding to the three estimated DCs), while the ones obtained
with geCAM are displayed with dashed red and orange lines (reflecting the two esti-
mated DCs). It is interesting to notice that the differences in the CAM’s clustering and
density estimation are driven by an additional component centered around 50. While the
presence of such a component allows a nice fit of the data in the third DC (in dark blue,
very similar in shape to SKBP’s second DC), it seems to strongly influence the other two
DCs, over-inflating the density when not necessary (see, for example, hospitals 1, 3, and
5). This behavior is further highlighted in Figure 9, which shows the posterior density
estimate of each group colored by DC for the geCAM and the CAM. Focusing on the
density estimates obtained with the geCAM, we see that, despite the great overlap, the
two distributions present different skewness, with DC2 containing the hospitals where
mothers gave birth to lighter babies, potentially indicating centers suitable for high-risk
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Figure 8: Posterior density estimates for the 12 groups (hospitals). The estimates under
the CAM are shown with solid blue lines, while the ones obtained with geCAM
are displayed with dashed red and orange lines.

pregnancies.
It is interesting to compare the distribution of the risk factor variables within the

two DCs, as displayed in Figure 10. Both the gestational age and the concentration of
DDE are linked to the weight at birth, and indeed, their distributions are quite different
within the two clusters. Remarkably, DC2 is associated with shorter pregnancies and
a higher dosage of DDE, hence, again, suggesting that this cluster comprises high-risk
pregnancies. Lastly, the proportion of smokers in DC2 is almost 60%, while it decreases
to 52.8% in DC1.

5. Conclusions
In this paper, we introduced the framework of the generalized CAM prior, designed to
enhance the flexibility of the model of Denti, Camerlenghi, et al. (2023). In particular,
we investigated how different SB specifications impact the prior correlation between
random probability measures generated by the CAM. In our study, we demonstrated
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Figure 9: Posterior density estimates for each group under the geCAM with SKBP ob-
servational prior (left) and standard CAM (right).

that adopting a process with heavier tails than the Dirichlet process, such as the Pitman-
Yor or the two-parameter beta process, enables the mass to be distributed over a larger
number of atoms. This promotes more heterogeneous group-specific mixing measures and
mitigates the strong prior correlations imposed by the CAM. Additionally, we explored
an alternative approach using a spike-and-slab hierarchical prior to explicitly introduce
group-specific atoms. We showed how the proposed prior can be conveniently used
as a mixing measure in nonparametric nested mixture models, developing an efficient
blocked Gibbs sampler for conducting posterior inference. On simulated and real data
we displayed how the geCAM mitigates the original “excess of borrowed information”
across groups, leading to more accurate posterior density estimates. Hence, the proposed
framework is preferable to the model of Denti, Camerlenghi, et al. (2023) whenever there
is no prior information about the similarity between the group-specific distributions.

The results of this work prove how different SB priors affect the flexibility of the
CAM. However, more elaborate SB constructions can be leveraged to extend the prior
in other possible directions. For example, covariate-dependent weights such as the probit
SB process (Dunson & Rodríguez, 2011) can modulate the correlations between nested
random measures according to additional variables. Another interesting direction is
investigating the usage of shrinkage priors other than the horseshoe for modeling the
“stick” variables in the SB process. Alternatively, clustering these random variables
would rank the atoms of each random measure into tiers of relevance, similarly to Denti,
Azevedo, et al. (2023). Alternatively, one could focus on solutions devised to impact the
order in which the atoms appear in the sequence, proposing permutations to disrupt the
correspondence with the SB weights. For instance, the approach proposed in Griffin and
Steel (2006) could be leveraged to address this issue.
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Figure 10: Kernel density estimates of the gestational age (left) and the DDE concen-
tration (right) in the two DCs obtained with the geCAM (DC1: red, DC2:
blue). The vertical lines denote the medians of the two distributions.

Another aspect worth investigating is the derivation of efficient variational inference
algorithms for posterior inference (Blei, Kucukelbir, & McAuliffe, 2017; D’Angelo &
Denti, 2024), which are especially useful when dealing with large datasets.
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Supplementary Material
A. Proofs of the theoretical results
In all the derivations, we assume that the vectors of distributional and observational
weights are such that πk ∈ [0, 1], ωl,k ∈ [0, 1] for all l, k ≥ 1 and

∑
k≥1 πk = 1,

∑
l≥1 ωl,k =

1 for all k ≥ 1.

A.1. Proof of Proposition 2.1
Suppose that the Gj ’s are defined on a Polish space (X,X ) and consider A ∈ X . We
also recall that Gj , Gj′

i.i.d.∼ Q, with Q =
∑

k≥1 πkδG∗
k

and G∗
k =

∑
l≥1 ωl,kδθ∗l . Also,

θ∗l
i.i.d.∼ H. To compute the correlation, we first derive the covariance between random

measures:
Cov(Gj(A), Gj′(A)) = E

[
Gj(A) ·Gj′(A)

]
− E [Gj(A)]E

[
Gj′(A)

]
= E

[
Gj(A)Gj′(A)

]
−H(A)2.

Let q1 = P
[
Gj = Gj′

]
=
∑

k≥1 P
[
Gj = G∗

k, Gj′ = G∗
k

]
. Then, the first term can be

rewritten as:

E
[
Gj(A)Gj′(A)

]
= q1E

[
G∗

k(A)
2
]
+ (1− q1)E [G∗

k(A) ·G∗
k′(A)] .

Then, we have, for fixed k, k′ such that k ̸= k′

E
[
G∗

k(A)
2
]
= E

∑
l≥1

ω2
l,kδθ∗l (A)

+ E

∑
l≥1

∑
l ̸=l′

ωl,kωl′,kδθ∗l (A)δθ
∗
l′
(A)


=
∑
l≥1

E
[
ω2
l,k

]
H(A) +

1−
∑
l≥1

E
[
ω2
l,k

]H(A)2

=

∑
l≥1

E
[
ω2
l,k

]H(A)(1−H(A)) +H(A)2,

and

E [G∗
k(A)G

∗
k′(A)] = E

∑
l≥1

ωl,kωl,k′δθ∗l (A)

+ E

∑
l≥1

∑
l ̸=l′

ωl,kωl′,j′δθ∗l (A)δθ
∗
l′
(A)


=
∑
l≥1

E [ωl,k]E
[
ωl,k′

]
H(A) +

1−
∑
l≥1

E [ωl,k]E
[
ωl,k′

]H(A)2

=

∑
l≥1

E [ωl,k]
2

H(A)(1−H(A)) +H(A)2.
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In the second derivation, we leveraged the fact that the first equality holds true in
particular when A = X, as noted in Denti, Camerlenghi, et al. (2023). In this spe-
cific case, E

[
G∗

k(X)G∗
k′(X)

]
= 1 = E

[∑
l≥1 ωl,kωl,k′

]
+ E

[∑
l≥1

∑
l ̸=l′ ωl,kωl′,k′

]
, so

1− E
[∑

l≥1 ωl,kωl,k′

]
= E

[∑
l≥1

∑
l ̸=l′ ωl,kωl′,k′

]
.

Now, let ξ1 =
∑

l≥1 E [ωl,k]
2 and ξ2 =

∑
l≥1 E

[
ω2
l,k

]
. Combining the previous two

results, we obtain

E
[
Gj(A)Gj′(A)

]
= [q1ξ2 + (1− q1)ξ1]H(A)(1−H(A)) +H(A)2, and

Cov(Gj(A), Gj′(A)) = [q1ξ2 + (1− q1)ξ1]H(A)(1−H(A)).

The variance is immediately obtained by letting j = j′ in the covariance (hence q1 = 1):

V ar(Gj(A)) = ξ2H(A)(1−H(A)).

Therefore, we can conclude that

Corr(Gj(A), Gj′(A)) =
Cov(Gj(A), Gj′(A))

V ar(Gj(A))

=
[q1ξ2 + (1− q1)ξ1]H(A)(1−H(A))

ξ2H(A)(1−H(A))

= q1 + (1− q1)ξ1/ξ2

= 1− (1− q1)(1− q2),

where we denoted q2 = ξ1/ξ2. Note that all the terms involving H(A) cancel out,
making the correlation invariant w.r.t. the set A. Finally, it is immediate to verify that
the term (1 − q1) ∈ [0, 1], since q1 is a probability. Regarding the second term, we can
show that E [ωl,k]

2 ≤ E
[
ω2
l,k

]
by Jensen inequality. Summing the elements of both sides

leads to
∑

l≥1 E [ωl,k]
2 ≤

∑
l≥1 E

[
ω2
l,k

]
. Therefore, in principle, the correlation is always

non-negative, i.e., ρj,j′ ∈ (0, 1).
We remark that this result does not guarantee that the correlation can attain every

value on (0, 1) regardless of the weight specification. Indeed, even for standard choices
of stochastic processes (e.g., DP, PYP, 2PBP), while there exists a combination of pa-
rameters for which q1 → 0 and q1 → 1, it is important to highlight that (1 − q2) can
potentially lie on a smaller subset, limiting the range of the correlation (this happens,
for example, in the case of a DP, where ρj,j′ ∈ (0.5, 1)).

A.2. Proof of Corollary 2.2
Let yi,j | Gj ∼ Gj and yi′,j′ | Gj′ ∼ Gj′ be two observations coming from two probability
measures both sampled from Q with j ̸= j′. Also, denote with q1 = P

[
Gj = Gj′

]
. We
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have that

P
[
yi,j = yi′,j′

]
= E

[
P
[
yi,j = yi′,j′ | Gj , Gj′

]]
= E

[
q1P

[
yi,j = yi′,j′ | Gj = Gj′

]
+ (1− q1)P

[
yi,j = yi′,j′ | Gj ̸= Gj′

]]
= E

q1
∑

l≥1

ω2
l,k

+ (1− q1)

∑
l≥1

ωl,kωl,k′


= q1

∑
l≥1

E
[
ω2
l,k

]+ (1− q1)

∑
l≥1

E [ωl,k]E
[
ωl,k′

]
=

∑
l≥1

E
[
ω2
l,k

]q1 + (1− q1)

∑
l≥1

E [ωl,k]
2

 /

∑
l≥1

E
[
ω2
l,k

]
=

∑
l≥1

E
[
ω2
l,k

] [1− (1− q1)(1− q2)]

=

∑
l≥1

E
[
ω2
l,k

] · ρj,j′ .

A.3. Proof of Corollary 2.4
To compute ρj,j′ using a PYP(ϑ, σ) on the observational level, we need to compute∑

l≥1 E
[
ω2
l,k

]
and

∑
l≥1 E [ωl,k]

2 under the same process. The first quantity is immediate
to compute as

E

∑
l≥1

ω2
l,k

 =
1− σ

1 + ϑ
, (13)

since E
[∑

l≥1 ω
2
l,k

]
equals the probability of ties under a PYP (Ghosal & van der Vaart,

2017). The second quantity can be computed knowing that

E [ωl,k] =
1− σ

ϑ+ 1 + (l − 1)σ

∏
q<l

ϑ+ qσ

ϑ+ 1 + (q − 1)σ


=

1− σ

σ
· (ϑ̃+ 1)(ϑ̃+ 2) · · · (ϑ̃+ (l − 1))

(ϑ̂)(ϑ̂+ 1) · · · (ϑ̂+ (l − 1))

=
1− σ

ϑ
· ϑ̃

[l]

ϑ̂[l]
,

where we defined ϑ̃ = ϑ/σ, ϑ̂ = (ϑ + 1)/σ, and the notation a[n] denotes the ascending
factorial (as in Ghosal & van der Vaart, 2017), i.e., a[n] = a(a+ 1) · · · (a+ n− 1). Let
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us call ζl(σ, ϑ) = ϑ̃[l]/ϑ̂[l]. Then,

∑
l≥1

E [ωl,k]
2 =

(
1− σ

ϑ

)2∑
l≥1

ζ2l (σ, ϑ). (14)

The term
∑

l≥1 ζ
2
l (σ, ϑ) can be easily evaluated numerically. Taking the ratios of the

quantities in (13)-(14) gives the results.

A.4. Proof of Corollary 2.5
We want to compute ρj,j′ using a 2PBP(s1, s2) on the observational level. First, we need
to compute

∑
l≥1 E

[
ω2
l,k

]
and

∑
l≥1 E [ωl,k]

2. Under the 2PBP(s1, s2), these quantities
are easy to derive using the properties of beta random variables, as

∑
l≥1

E [ωl,k]
2 =

s21
(s1 + s2)2

∑
l≥1

(
s22

(s1 + s2)2

)l−1

=
s1

s1 + 2s2
,

∑
l≥1

E
[
ω2
l,k

]
=

s1(s1 + 1)

(s1 + s2)(s1 + s2 + 1)

∑
l≥1

(
s2(s2 + 1)

(s1 + s2)(s1 + s2 + 1)

)l−1

=
(s1 + 1)

(s1 + 2s2 + 1)
.

(15)

By considering the ratio of the quantities in (15), we obtain

q2 =

∑
l≥1 E [ωl,k]

2∑
l≥1 E

[
ω2
l,k

] =
s1(s1 + 2s2 + 1)

(s1 + 2s2)(s1 + 1)
. (16)

A.5. Proof of Corollary 2.6
Now consider the following generic SKBP(s1, s2, p), with s1, s2 > 0 and p ∈ (0, 1), defined
as

ωl,k = ul,k
∏
q<l

(1− uq,k), ul,k ∼ pδ0 + (1− p)Beta(s1, s2).

The stick variables have the following moments:

E [ul,k] =
(1− p)s1
s1 + s2

, E [(1− ul,k)] =
ps1 + s2
s1 + s2

,

E
[
u2l,k
]
=

(1− p)s1(s1 + 1)

(s1 + s2)(s1 + s2 + 1)
,

E
[
(1− ul,k)

2
]
=
ps1 (s1 + 2s2 + 1) + s2(s2 + 1)

(s1 + s2)(s1 + s2 + 1)
.

(17)

Then, let us denote with fB(x; s1, s2) the density of a Beta(s1, s2) random variable. We
can derive that E [log(1− ul,k)] = (1−p)

∫ 1
0 log(1−x)fB(x; s1, s2)dx = (1−p) (ψ(s2)− ψ(s1 + s2)),
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where ψ(·) is the digamma function. We check that
∑

l≥1 E [log(1− ul,k)] = (1 −
p)
∑

l≥1 (ψ(s2)− ψ(s1 + s2)) = −∞. Following Ishwaran and James (2001), this is a
sufficient condition to state that SKBP(s1, s2, p) is a valid SB construction. An impor-
tant quantity to calculate is

∑
l≥1

[
E
[
(1− ul,k)

2
]]l. Since

|E
[
(1− ul,k)

2
]
| < 1,

the series converges to the following value:∑
l≥1

[
E
[
(1− ul,k)

2
]]l−1

=
(s1 + s2)(s1 + s2 + 1)

(1− p)s1(s1 + 2s2 + 1)
. (18)

Finally, we can also deduce that

E [ωl,k] =
(1− p)s1
s1 + s2

(
ps1 + s2
s1 + s2

)l−1

.

To compute ρj,j′ using a SKBP(s1, s2, p) on the observational level, we need to compute∑
l≥1 E

[
ω2
l,k

]
and

∑
l≥1 E [ωl,k]

2. As for the first quantity, using the results in (17) and
exploiting the fact that the ul,k’s are all i.i.d., we can write

E
[
ω2
l,k

]
= E

[
u21,k

]
E
[
(1− u1,k)

2
]l−1

=
(1− p)s1(s1 + 1)

(s1 + s2)(s1 + s2 + 1)
·
(
ps1 (s1 + 2s2 + 1) + s2(s2 + 1)

(s1 + s2)(s1 + s2 + 1)

)l−1

.

Then,∑
l≥1

E
[
ω2
l,k

]
=

(1− p)s1(s1 + 1)

(s1 + s2)(s1 + s2 + 1)

∑
l≥1

(
ps1 (s1 + 2s2 + 1) + s2(s2 + 1)

(s1 + s2)(s1 + s2 + 1)

)l−1

,

which simplifies to ∑
l≥1

E
[
ω2
l,k

]
=

s1 + 1

s1 + 2s2 + 1
. (19)

Knowing that

E [ωl,k]
2 =

(1− p)2s21
(s1 + s2)2

(
(ps1 + s2)

2

(s1 + s2)2

)l−1

,

the second quantity is given by∑
l≥1

E [ωl,k]
2 =

(1− p)2s21
(s1 + s2)2

∑
l≥1

(
(ps1 + s2)

2

(s1 + s2)2

)l−1

=
(1− p)s1

(1 + p)s1 + 2s2
.

(20)

Finally, by considering the ratio of the quantities in (19)-(20), we obtain

q2 =

∑
l≥1 E [ωl,k]

2∑
l≥1 E

[
ω2
l,k

] =
(1− p)s1(s1 + 2s2 + 1)

((1 + p)s1 + 2s2)(s1 + 1)
. (21)
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A.6. Expressions for q1 under the different SB specifications
Recall that q1 is simply defined as q1 =

∑
k≥1 E

[
π2k
]
. Therefore, it is immediate to

derive the expressions of q1 under the different distributional SB specifications explored:

• π ∼ DP(αd) =⇒ q1 =
1

1+αd

• π ∼ PYP(θd, σd) =⇒ q1 =
1−σd
1+θd

• π ∼ 2PBP(d1, d2) =⇒ q1 =
d1+1

d1+2d2+1

• π ∼ SKBP(d1, d2, p) =⇒ q1 =
d1+1

d1+2d2+1

29



B. Additional results
B.1. Prior correlations
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Figure S1: Evolution of the term (1− q2) across the different prior specifications for the
observational weights.
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Figure S2: Prior correlations for different values of the parameters (ϑ, σ) (PYP, top row)
and (s1, s2) (2PBP, bottom row) when assumed as priors for the distributional
weights in a nested generalized common atoms model, with different DP
specifications for the observational weights (over the columns).
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Figure S3: Prior correlations for different values of the parameters (s1, s2) (SKBP, with
different values of p across rows) when assumed as priors for the distributional
weights in a nested generalized common atoms model, with different DP
specifications for the observational weights (over the columns).
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Figure S4: Prior correlations for different values of the parameters (ϑ, σ) (PYP, top row)
and (s1, s2) (2PBP, bottom row) when assumed as priors for the observational
weights in a nested generalized common atoms model, with different DP
specifications for the distributional weights (over the columns).
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Figure S5: Prior correlations for different values of the parameters (s1, s2) (SKBP, with
different values of p across rows) when assumed as priors for the observational
weights in a nested generalized common atoms model, with different DP
specifications for the distributional weights (over the columns).
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B.2. Simulation study in the main paper

SKBP(1, 1, p)

p n J K∗ L∗ S̄ M̄ Seconds

0 10 2 2.000 (0.000) 2.100 (0.303) 3.458 (0.062) 3.028 (0.330) 0.835 (0.230)
0.25 10 2 2.000 (0.000) 2.240 (0.431) 3.458 (0.074) 3.947 (0.487) 0.874 (0.243)
0.5 10 2 2.000 (0.000) 2.320 (0.513) 3.474 (0.088) 5.564 (0.782) 0.851 (0.234)
0.75 10 2 2.000 (0.000) 2.320 (0.513) 3.477 (0.091) 8.919 (1.041) 0.817 (0.201)
Beta 10 2 2.000 (0.000) 2.320 (0.513) 3.456 (0.104) 6.752 (1.537) 0.841 (0.193)

0 10 4 2.000 (0.000) 2.440 (0.501) 3.135 (0.081) 3.151 (0.309) 1.121 (0.281)
0.25 10 4 2.000 (0.000) 2.520 (0.505) 3.082 (0.104) 4.122 (0.465) 1.165 (0.287)
0.5 10 4 2.000 (0.000) 2.640 (0.485) 3.000 (0.123) 5.744 (0.785) 1.134 (0.277)
0.75 10 4 2.000 (0.000) 2.540 (0.503) 2.906 (0.117) 9.185 (1.377) 1.060 (0.233)
Beta 10 4 2.000 (0.000) 2.440 (0.501) 2.990 (0.120) 6.898 (1.785) 1.120 (0.253)

0 10 6 2.000 (0.000) 2.300 (0.463) 2.953 (0.103) 3.171 (0.248) 1.365 (0.332)
0.25 10 6 2.000 (0.000) 2.580 (0.499) 2.929 (0.089) 4.015 (0.403) 1.399 (0.329)
0.5 10 6 2.000 (0.000) 2.680 (0.471) 2.816 (0.107) 5.614 (0.678) 1.368 (0.318)
0.75 10 6 2.000 (0.000) 2.700 (0.505) 2.663 (0.127) 9.055 (1.344) 1.307 (0.304)
Beta 10 6 2.000 (0.000) 2.600 (0.495) 2.786 (0.130) 6.882 (1.589) 1.341 (0.270)

Table S1: Average and standard deviation (across the 50 replications) of the number of
estimated distributional and observational clusters (K∗, L∗), of the maximum
value of the distributional and observational labels (S̄, M̄), and of the compu-
tational time (in seconds). Results for n = 10.
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SKBP(1, 1, p)

p n J K∗ L∗ S̄ M̄ Seconds

0 25 2 2.000 (0.000) 2.400 (0.535) 3.480 (0.134) 3.184 (0.410) 1.158 (0.300)
0.25 25 2 2.000 (0.000) 2.480 (0.544) 3.465 (0.129) 4.067 (0.589) 1.200 (0.301)
0.5 25 2 2.000 (0.000) 2.600 (0.535) 3.455 (0.128) 5.935 (0.843) 1.174 (0.292)
0.75 25 2 2.000 (0.000) 2.580 (0.538) 3.488 (0.171) 9.158 (1.503) 1.122 (0.251)
Beta 25 2 2.000 (0.000) 2.500 (0.544) 3.478 (0.143) 7.334 (1.934) 1.148 (0.253)

0 25 4 2.000 (0.000) 2.400 (0.495) 2.887 (0.151) 3.188 (0.312) 1.729 (0.409)
0.25 25 4 2.000 (0.000) 2.560 (0.541) 2.895 (0.119) 4.149 (0.528) 1.774 (0.400)
0.5 25 4 2.000 (0.000) 2.780 (0.465) 2.896 (0.162) 5.971 (0.875) 1.746 (0.390)
0.75 25 4 2.000 (0.000) 2.860 (0.405) 2.757 (0.166) 9.418 (1.846) 1.675 (0.368)
Beta 25 4 2.000 (0.000) 2.620 (0.490) 2.884 (0.145) 7.181 (2.378) 1.721 (0.333)

0 25 6 2.000 (0.000) 2.660 (0.593) 2.677 (0.152) 3.396 (0.476) 2.303 (0.515)
0.25 25 6 2.000 (0.000) 2.860 (0.572) 2.715 (0.135) 4.455 (0.799) 2.335 (0.495)
0.5 25 6 2.000 (0.000) 3.020 (0.622) 2.650 (0.181) 6.569 (1.296) 2.293 (0.478)
0.75 25 6 2.000 (0.000) 3.040 (0.493) 2.568 (0.154) 9.939 (2.010) 2.223 (0.459)
Beta 25 6 2.000 (0.000) 2.880 (0.521) 2.612 (0.173) 7.871 (2.462) 2.289 (0.454)

0 50 2 2.000 (0.000) 2.420 (0.499) 3.488 (0.230) 3.206 (0.290) 1.689 (0.392)
0.25 50 2 2.000 (0.000) 2.580 (0.538) 3.520 (0.195) 4.177 (0.534) 1.738 (0.386)
0.5 50 2 2.000 (0.000) 2.760 (0.476) 3.425 (0.141) 5.924 (0.920) 1.683 (0.365)
0.75 50 2 2.000 (0.000) 2.820 (0.388) 3.449 (0.250) 9.907 (1.791) 1.624 (0.350)
Beta 50 2 2.000 (0.000) 2.560 (0.501) 3.432 (0.214) 7.289 (2.768) 1.665 (0.314)

0 50 4 2.000 (0.000) 2.600 (0.535) 2.852 (0.262) 3.364 (0.438) 2.752 (0.582)
0.25 50 4 2.000 (0.000) 2.700 (0.544) 2.839 (0.178) 4.461 (0.797) 2.795 (0.565)
0.5 50 4 2.000 (0.000) 2.940 (0.586) 2.797 (0.202) 6.35 (1.448) 2.747 (0.548)
0.75 50 4 2.000 (0.000) 2.920 (0.444) 2.762 (0.245) 9.83 (2.153) 2.675 (0.527)
Beta 50 4 2.000 (0.000) 2.820 (0.482) 2.823 (0.277) 7.802 (2.785) 2.761 (0.558)

0 50 6 2.000 (0.000) 2.580 (0.538) 2.671 (0.319) 3.391 (0.345) 3.872 (0.792)
0.25 50 6 2.000 (0.000) 2.900 (0.463) 2.608 (0.143) 4.241 (0.601) 3.885 (0.757)
0.5 50 6 2.000 (0.000) 3.020 (0.377) 2.532 (0.172) 6.613 (1.465) 3.845 (0.735)
0.75 50 6 2.000 (0.000) 2.960 (0.402) 2.596 (0.213) 10.409 (2.339) 3.759 (0.715)
Beta 50 6 2.000 (0.000) 2.880 (0.480) 2.514 (0.181) 8.524 (3.280) 3.825 (0.732)

Table S2: Average and standard deviation (across the 50 replications) of the number of
estimated distributional and observational clusters (K∗, L∗), of the maximum
value of the distributional and observational labels (S̄, M̄), and of the compu-
tational time (in seconds). Results for n = 25, 50.
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2PBP(s, s)

s n J K∗ L∗ S̄ M̄ Seconds

1.000 10 2 2.000 (0.000) 2.200 (0.404) 3.456 (0.081) 3.015 (0.357) 0.804 (0.233)
0.500 10 2 2.000 (0.000) 2.060 (0.240) 3.460 (0.072) 2.862 (0.298) 0.815 (0.203)
0.100 10 2 2.000 (0.000) 2.000 (0.000) 3.452 (0.074) 3.013 (0.499) 0.830 (0.193)

1.000 10 4 2.000 (0.000) 2.440 (0.501) 3.130 (0.091) 3.17 (0.319) 1.088 (0.278)
0.500 10 4 2.000 (0.000) 2.100 (0.303) 3.237 (0.089) 2.887 (0.337) 1.128 (0.282)
0.100 10 4 2.000 (0.000) 2.000 (0.000) 3.428 (0.101) 3.013 (0.468) 1.106 (0.230)

1.000 10 6 2.000 (0.000) 2.420 (0.499) 2.949 (0.091) 3.181 (0.223) 1.335 (0.328)
0.500 10 6 2.000 (0.000) 2.060 (0.240) 3.150 (0.090) 2.892 (0.256) 1.377 (0.332)
0.100 10 6 2.000 (0.000) 2.000 (0.000) 3.502 (0.126) 2.774 (0.538) 1.357 (0.272)

1.000 25 2 2.000 (0.000) 2.300 (0.463) 3.483 (0.143) 3.136 (0.405) 1.143 (0.298)
0.500 25 2 2.000 (0.000) 2.100 (0.303) 3.431 (0.098) 2.882 (0.356) 1.177 (0.299)
0.100 25 2 2.000 (0.000) 2.020 (0.141) 3.460 (0.069) 3.072 (0.691) 1.151 (0.245)

1.000 25 4 2.000 (0.000) 2.340 (0.479) 2.921 (0.127) 3.217 (0.320) 1.714 (0.408)
0.500 25 4 2.000 (0.000) 2.160 (0.370) 3.049 (0.093) 2.901 (0.298) 1.748 (0.406)
0.100 25 4 2.000 (0.000) 2.000 (0.000) 3.351 (0.151) 3.017 (0.859) 1.750 (0.356)

1.000 25 6 2.000 (0.000) 2.580 (0.575) 2.700 (0.152) 3.38 (0.498) 2.298 (0.510)
0.500 25 6 2.000 (0.000) 2.200 (0.452) 2.913 (0.105) 2.98 (0.447) 2.322 (0.506)
0.100 25 6 2.000 (0.000) 2.060 (0.240) 3.351 (0.213) 3.432 (0.935) 2.323 (0.470)

1.000 50 2 2.000 (0.000) 2.380 (0.490) 3.488 (0.189) 3.198 (0.317) 1.759 (0.370)
0.500 50 2 2.000 (0.000) 2.040 (0.198) 3.465 (0.143) 2.835 (0.267) 1.771 (0.356)
0.100 50 2 2.000 (0.000) 2.000 (0.000) 3.460 (0.068) 2.879 (0.646) 1.775 (0.342)

1.000 50 4 2.000 (0.000) 2.580 (0.538) 2.853 (0.271) 3.339 (0.416) 2.751 (0.582)
0.500 50 4 2.000 (0.000) 2.160 (0.422) 2.956 (0.120) 2.904 (0.426) 2.791 (0.592)
0.100 50 4 2.000 (0.000) 2.040 (0.198) 3.270 (0.163) 3.406 (1.079) 2.799 (0.578)

1.000 50 6 2.000 (0.000) 2.600 (0.535) 2.592 (0.261) 3.376 (0.370) 3.850 (0.789)
0.500 50 6 2.000 (0.000) 2.220 (0.418) 2.769 (0.140) 3.025 (0.355) 3.867 (0.789)
0.100 50 6 2.000 (0.000) 2.040 (0.198) 3.190 (0.224) 3.674 (1.106) 3.886 (0.778)

Table S3: Average and standard deviation (across the 50 replications) of the number of
estimated distributional and observational clusters (K∗, L∗), of the maximum
value of the distributional and observational labels (S̄, M̄), and of the compu-
tational time (in seconds).
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Figure S6: Distributions of the JS divergence (top panels) and TV distances (bottom
panels) over the 50 replications for a geCAM embedded with a SKBP(1, 1, p),
for different specifications of p. The standard CAM is obtained for p = 0,
while the last column corresponds to a random p ∼ Beta(1, 1). Each panel
corresponds to a simulation scenario.
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Figure S7: Distributions of the JS divergence (top panels) and TV distances (bottom
panels) over the 50 replications for a geCAM embedded with a 2PBP(s, s),
for different specifications of s. The standard CAM is obtained for s = 1.
Each panel corresponds to a simulation scenario.
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Figure S8: Ground truth (black line) and posterior density estimates of different
SKBP(1, 1, p) model specifications (different values of p correspond to dif-
ferent colors) for the first (top graphs) and second (bottom graphs) subpop-
ulations used in the simulations study.
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Figure S9: Ground truth (black line) and posterior density estimates of different
2PBP(s, s) model specifications (different values of s correspond to different
colors) for the first (top graphs) and second (bottom graphs) subpopulations
used in the simulations study.
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B.3. Additional simulation study
Similarly to the case presented in the main text, here we consider a simulation study
with more complicated subpopulation distributions generating the grouped data. In
particular, we generate J/2 samples of size n from

p1 =
1

3
N(−5, 1) +

1

3
N(0, 1) +

1

3
N(5, 1)

and another J/2 samples of size n from

p2 =
1

2
N(0, 1) +

1

2
N(3, 1).

Then, we sample J ∈ {2, 4} groups comprising Nj = n ∈ {12, 30} independent obser-
vations. Again, considering all the possible combinations between the values of J and n
results in 4 simulation scenarios. All the other simulation settings and the assessment
of the results follow the same procedure delineated in the main paper. Figures S10, S11,
and S12 display the results in terms of KL divergence, JS divergence, and TV distance,
respectively.
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Figure S10: Distributions of the KL divergence over the 50 replications for a geCAM em-
bedded with a SKBP(1, 1, p) (top graphs) and the 2PBP(s) (bottom graphs),
for different specifications of p and s, respectively.
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Figure S11: Distributions of the JS divergence over the 50 replications for a geCAM em-
bedded with a SKBP(1, 1, p) (top graphs) and the 2PBP(s) (bottom graphs),
for different specifications of p and s, respectively.
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Figure S12: Distributions of the TV distance over the 50 replications for a geCAM em-
bedded with a SKBP(1, 1, p) (top graphs) and the 2PBP(s) (bottom graphs),
for different specifications of p and s, respectively.
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B.4. Application to CPP data
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Figure S13: MCMC traceplots of the number of filled distributional and observational
components (defined in the main text as K∗ and L∗, top row) and values
of the largest label used (S̄ and M̄ , bottom row) obtained with the geCAM
(SKBP) and CAM models when fitted to the CPP data. All traces are below
the truncation values chosen for model fitting.
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