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Summary 10

The computation of multivariate Gaussian cumulative distribution functions is a key step in
many statistical procedures, often representing a crucial computational bottleneck. Over the last
decades, efficient algorithms have been proposed to address this problem, mainly leveraging on
Monte Carlo solutions. This article highlights a connection between the multivariate Gaussian
cumulative distribution function and the marginal likelihood of a tailored dual Bayesian probit 15

model. Consequently, any method that approximates such a marginal likelihood can be used to
estimate the quantity of interest. In this work, we focus on the approximation provided by the
expectation propagation algorithm. Its empirical accuracy and polynomial computational cost
make it an appealing choice, especially for tail probabilities, even if theoretical guarantees are
currently limited. Its efficiency, accuracy and stability are shown for multiple correlation matrices 20

and integration limits, highlighting a series of advantages over state-of-the-art alternatives.

Some key words: Approximate inference; Cumulative distribution function; Expectation propagation; Multivariate
Gaussian distribution; Probit model.

1. Introduction
The computation of multivariate Gaussian cumulative distribution functions is a problem 25

encountered in many statistical applications, often representing the computational bottleneck in
model fitting, parameter estimation, and prediction. Let us consider, without loss of generality,
an 𝑚-dimensional multivariate Gaussian random variable with mean 0 and covariance matrix Σ.
Then, for 𝑢 = (𝑢1, . . . , 𝑢𝑚)⊤ ∈ R𝑚, its cumulative distribution function is defined as

Φ𝑚(𝑢;Σ) =
∫
𝐶𝑢

1√︁
(2𝜋)𝑚 |Σ |

exp
{
−1

2
𝑤⊤Σ−1𝑤

}
𝑑𝑤, (1)

where𝐶𝑢 = {𝑤 = (𝑤1, . . . , 𝑤𝑚)⊤ ∈ R𝑚 : 𝑤𝑖 ≤ 𝑢𝑖 , ∀𝑖 = 1, . . . , 𝑚}. Such functions usually appear 30

as a consequence of partially-observed Gaussian latent variables in various models. Popular
examples include the Bayesian probit (Albert & Chib, 1993; Durante, 2019), the multivariate
(Ochi & Prentice, 1984) and multinomial (Hausman & Wise, 1978; Stern, 1992; Connors et al.,
2014; Fasano & Durante, 2022; Ding et al., 2024) probit, and formulations that employ skew-
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normal densities (Genton, 2004; Arellano-Valle & Azzalini, 2006; Azzalini, 2014) to account for35

skewness in the observations and, possibly, in the model parameters under the Bayesian setting.
See Anceschi et al. (2023a) for a broad class of Bayesian models whose posterior distribution
belongs to the unified skew-normal family (Arellano-Valle & Azzalini, 2006), thus involving
multivariate Gaussian cumulative distribution functions in their posterior density. Sampling
algorithms for the computation of Φ𝑚(𝑢;Σ) typically leverage on the separation-of-variables40

method developed by Genz (1992), where the integration region is converted into the unit
hypercube thanks to a change of variable. However, its high computational cost motivated further
research to devise more scalable and accurate alternatives. Trinh & Genz (2015) considered
both univariate and bivariate reorderings of variables, observing that estimation accuracy can
be effectively improved by reordering the variables so that outermost ones have the smallest45

expected values. Botev (2017) improved the accuracy over the separation-of-variables method
by introducing a minimax tilting technique. Although it has an asymptotically vanishing relative
error, such an approach may become computationally impractical for dimensions above a few
hundred. Other proposals focusing on orthant probabilities include the sequential Monte Carlo
approach by Ridgway (2016), the two-step method by Azzimonti & Ginsbourger (2018), and50

previous approaches exploiting the specific orthant structure (Miwa et al., 2003; Craig, 2008). See
also Genz & Bretz (2009). To obtain more scalable integral estimates, Cao et al. (2021) proposed a
procedure that combines the separation-of-variables method with the tile-low-rank representation
(Weisbecker, 2013; Mary, 2017; Akbudak et al., 2017) of the covariance matrix and the block
variable reordering from Cao et al. (2019), improving over the hierarchical quasi Monte Carlo55

method by Genton et al. (2018). This representation leads to massive computational advantages,
increasing the dimensions of the problems that can be effectively tackled, as the method is feasible
for dimensions of 𝑚 of the order of tens of thousands. However, the maximal computational gains
are obtained when the covariance structure exhibits low-rank structures. When this is not the
case, the tile-low-rank method may not be applicable, leaving the computation of multivariate60

Gaussian cumulative distribution functions with a generic covariance matrix an open issue.
In the present contribution, we address the problem by showing that any Gaussian cumulative

distribution function (1) can be characterized as the marginal likelihood of a dual Bayesian probit
model. As a consequence, any method that gives an approximation of the marginal likelihood can
be employed to estimateΦ𝑚(𝑢;Σ). Popular options for this task are available both among sampling65

methods (e.g., sequential Monte Carlo, Chopin & Papaspiliopoulos, 2020), and deterministic
approximations (e.g., variational inference, Blei et al., 2017, or expectation propagation Minka,
2001a,b; Vehtari et al., 2020). Motivated by the excellent empirical performance of the expectation
propagation algorithm in various applications (Chopin & Ridgway, 2017; Braunstein et al., 2017;
Zhang et al., 2019; Vehtari et al., 2020; Zhou et al., 2023; Anceschi et al., 2023a), we exploit such70

an algorithm to approximate Φ𝑚(𝑢;Σ). This method avoids the computational issues associated
with sampling and is shown to be accurate and stable for generic covariance matrices, although
theoretical guarantees are currently confined to the large data limit (Dehaene & Barthelmé, 2015,
2018). As shown in the experiments, expectation propagation may be the preferable option for
computing tail probabilities, where sampling methods may encounter underflow issues, or in high-75

dimensional settings, due to its computational advantages. Such an approach is also motivated by
the promising results obtained by Cunningham et al. (2011), who used expectation propagation
for the computation of Gaussian probabilities, although with a different perspective from the one
presented here. In their approximation, the multivariate Gaussian probability of interest is seen as
the normalizing constant of a truncated multivariate Gaussian density function, and expectation80

propagation is applied by considering the unconstrained Gaussian density as the prior distribution
and the indicator functions of the truncation constraints as likelihood terms.



Miscellanea 3

2. Gaussian cumulative distribution functions as marginal likelihoods of dual
Bayesian probit models

Consider a Bayesian probit model with 𝑛 observations, 𝑝 explanatory variables, and Gaussian 85

prior with mean vector 𝜉 and covariance matrix Ω for the coefficients. Let 𝑦 = (𝑦1, . . . , 𝑦𝑛)⊤ ∈
{0, 1}𝑛 denote the observation vector and 𝑋 = (𝑥1, . . . , 𝑥𝑛)⊤ ∈ R𝑛×𝑝 be the design matrix with
generic row 𝑥⊤

𝑖
given by the covariate vector for observation 𝑖. Then, this model can be defined as

𝑦𝑖 | 𝛽 𝑖𝑛𝑑∼ Bernoulli
{
Φ1(𝑥⊤𝑖 𝛽; 1)

}
, 𝑖 = 1, . . . , 𝑛, 𝛽 ∼ N𝑝 (𝜉,Ω) . (2)

The crucial point of our contribution is recognizing that any function of the form (1) can be
rewritten as the marginal likelihood of a dual Bayesian probit model with 𝑛 = 𝑝 = 𝑚. This 90

fundamental analogy is guaranteed by the following proposition.

Proposition 1. Given any positive definite 𝑚 × 𝑚 covariance matrix Σ, call 𝜆𝑚 its smallest
eigenvalue and define Σ̃ = Σ − 𝜖𝜆𝑚𝐼𝑚, where 𝜖 ∈ (0, 1). Consider now any factorization of Σ̃ of
the form Σ̃ = 𝑃Λ̃𝑃⊤, where 𝑃 and Λ̃ are 𝑚 × 𝑚 matrices with the former invertible and the latter
symmetric and positive definite. Then, for any 𝑢 ∈ R𝑚, Φ𝑚(𝑢;Σ) equals the marginal likelihood 95

of a dual Bayesian probit model (2) in which 𝑛 = 𝑝 = 𝑚, 𝑦𝑖 = 1 for all 𝑖 = 1, . . . , 𝑛, and

𝜉 = (𝜖𝜆𝑚)−1/2 𝑃−1𝑢, Ω = (𝜖𝜆𝑚)−1 Λ̃, 𝑋 = 𝑃.

The proof is reported in the Supplementary Material. Since Σ̃ in Proposition 1 is still a positive
definite symmetric 𝑚 × 𝑚 matrix, whose eigenvalues simply differ from the ones of Σ by 𝜖𝜆𝑚,
multiple factorizations of the form 𝑃Λ̃𝑃⊤ are possible, like the eigendecomposition, the singular
value, and the Cholesky decomposition (Petersen et al., 2008). In the experiments, we considered 100

the eigen- and Cholesky decompositions. In the former, 𝑃 is an orthogonal matrix whose columns
are the eigenvectors of Σ̃, and Λ̃ = diag(�̃�1, . . . , �̃�𝑚) is a diagonal matrix whose entries are the
sorted eigenvalues of Σ̃ in decreasing order; thus, the Gaussian prior for 𝛽 in the dual probit has
mean (𝜖𝜆𝑚)−1/2 𝑃⊤𝑢 and independent components with variances �̃�𝑖/(𝜖𝜆𝑚), 𝑖 = 1, . . . , 𝑛. In the
Cholesky decomposition, 𝑃 is lower triangular and Λ̃ = 𝐼𝑚, so that 𝛽 has a spherical Gaussian 105

prior, with mean (𝜖𝜆𝑚)−1/2 𝑃−1𝑢 and independent components with equal variance (𝜖𝜆𝑚)−1. The
two decompositions are shown to give comparable results in terms of running times and accuracy
of the approximation in the Supplementary Material. As a direct implication of Proposition 1, any
method that efficiently approximates the marginal likelihood of the Bayesian probit model (2) can
be leveraged to compute the Gaussian cumulative distribution function (1). In the remainder of 110

the paper, we concentrate on the approximation given by the expectation propagation algorithm.

3. Expectation propagation for Gaussian cumulative distribution functions
Motivated by the empirical accuracy showed in multiple related applications (Chopin & Ridg-

way, 2017; Zhang et al., 2019; Fasano et al., 2023; Anceschi et al., 2023a,b, 2024), we rely on
expectation propagation to approximate the marginal likelihood in the dual probit model of Propo- 115

sition 1, obtaining an estimate of Φ𝑚(𝑢;Σ) in (1). In general, this method consists in an iterative
algorithm to obtain an approximation of the posterior distribution, its moments, and, if desired,
the marginal likelihood in a Bayesian model with conditionally independent observations having
likelihood 𝑝(𝑦𝑖 | 𝛽), 𝑖 = 1, . . . , 𝑛 and parameter 𝛽 a priori distributed as 𝑝(𝛽). To this scope,
the posterior distribution 𝑝(𝛽 | 𝑦) ∝ 𝑝(𝛽)∏𝑛

𝑖=1 𝑝(𝑦𝑖 | 𝛽) of the 𝑝-dimensional parameter 𝛽 is 120

approximated with a density 𝑞ep(𝛽) that has the same factorization 𝑞ep(𝛽) ∝ 𝑞0(𝛽)
∏𝑛

𝑖=1 𝑞𝑖 (𝛽).
To have a tractable global approximation 𝑞ep(𝛽), the factors (or sites) 𝑞𝑖 (𝛽), 𝑖 = 0, . . . , 𝑛, are taken
from an exponential family kernel whose parameters are updated sequentially imposing some
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so-called moment matching conditions. Details can be found in Section S.2 of the Supplementary
Material. See also Fasano et al. (2023) for detailed derivations for the Bayesian probit model125

(excluding the computation of the marginal likelihood) and Anceschi et al. (2024) for a complete
overview in the case of multiple generalized linear models, including the probit model. The key
point for the expectation propagation implementation is the tractability of the hybrid density
ℎ𝑖 (𝛽) = 𝑝(𝑦𝑖 | 𝛽)𝑞−𝑖 (𝛽)/𝑍ℎ𝑖 , where 𝑞−𝑖 (𝛽) ∝ 𝑞ep(𝛽)/𝑞𝑖 (𝛽) is the so-called cavity density and
𝑍ℎ𝑖 =

∫
𝑝(𝑦𝑖 | 𝛽)𝑞−𝑖 (𝛽)𝑑𝛽. Indeed, one has to be able to compute the first two moments of ℎ𝑖 (𝛽)130

as well as the normalizing constant 𝑍ℎ𝑖 . In the case of the probit model, this is immediate since
ℎ𝑖 (𝛽) is the density of a multivariate extended skew-normal (Anceschi et al., 2024; Azzalini,
2014) and all the desired quantities are available in closed form.

Classic expectation propagation implementations for a Bayesian probit model with 𝑝-
dimensional parameter and 𝑛 observations come with per-iteration cost O(𝑝2𝑛) (Chopin &135

Ridgway, 2017; Anceschi et al., 2024), although different implementations having O(𝑝𝑛2) per-
iteration cost are possible, which tend to be more efficient when both 𝑝 and 𝑛 are large and are
of the same order (see Algorithm 2 in Anceschi et al., 2024). Since in the dual probit model (2)
𝑛 = 𝑝 = 𝑚, the overall cost to compute Φ𝑚(𝑢;Σ) via expectation propagation has order O(𝑚3),
regardless of the specific implementation considered. This is also in line with the 𝑂 (𝑛3) per-140

iteration cost reported for Gaussian processes classification via expectation propagation for 𝑛

observations with probit likelihood in Chapter 3.6 of Rasmussen & Williams (2006).
In our studies, we have implemented the expectation propagation routine for the dual Bayesian

probit model adapting both the algorithms presented in Anceschi et al. (2024). Here, we present
results obtained with Algorithm 2, which is generally more efficient when 𝑝 is of the same order145

as 𝑛, as in this case. All the details about the derivations and comparisons of the implementations
are reported in the Supplementary Material.

4. Results
We assess the performance of the proposed method across different dimensional settings and

varying upper integration limits. Without loss of generality, we focus on the case where Σ is150

a correlation matrix rather than a covariance matrix. The estimation methods introduced in
Section 3 were implemented in C++ and integrated into R via the Rcpp and RcppArmadillo
package (Eddelbuettel & François, 2011; Eddelbuettel & Sanderson, 2014). The simulations
were run on an Intel Core i7-14700K workstation with 32 GB of RAM.

We examine matrix dimensions 𝑚 ∈ {16, 64, 128, 256, 512, 1024}, with a fixed lower integra-155

tion limit of −∞1𝑚, and an upper limit of 𝑢 = 𝑐1𝑚, where 𝑐 spans 20 equidistant points in
[−2, 2] and 1𝑚 denotes the 𝑚-dimensional column vector of ones. We benchmark our proposed
methodology using three types of correlation matrices: (i) random correlation matrices generated
following Davies & Higham (2000), (ii) constant correlation matrices with off-diagonal entries
𝜌 ∈ {0, 0.25, 0.50, 0.75}, and (iii) random correlation matrices obtained by standardization of160

𝐴⊤𝐴, with 𝐴 𝑚 × 𝑚 matrix with independent standard Gaussian entries. Results for the expecta-
tion propagation approximation of Φ𝑚(𝑢;Σ) presented in Section 3 are shown using the Cholesky
factorization of the matrix Σ̃ introduced in Section 2, with 𝜖 = 0.01. Using the eigendecomposi-
tion factorization of Σ̃ or different implementations of expectation propagation does not alter the
estimates, up to numerical precision. See the Supplementary Material for details.165

In each scenario, we benchmark the proposed method to three state-of-the-art algorithms:
Botev’s method (Botev, 2017), as implemented in the TruncatedNormal package, Ridgeway’s
method (Ridgway, 2016) (authors’ implementation), and — depending on the case considered —
Genz’s (Genz, 1992) or tile-low-rank (Cao et al., 2021) algorithms from the tlrmvnmvt package
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Fig. 1: Boxplots of the relative differences in the estimates of log2 Φ𝑚(𝑢;Σ) obtained by various
methods are shown as a function of the upper integration limit 𝑢, for the case where Σ is a
randomly generated dense correlation matrix following Davies & Higham (2000) (case (i)).
The three sampling-based methods by Botev (2017), Genz (1992), and Ridgway (2016) are
benchmarked against the proposed expectation propagation approximation using the Cholesky
decomposition of the matrix Σ̃ = Σ − 𝜖𝜆𝑚𝐼𝑚. Each boxplot summarizes the results from ten
independent runs. Numerical estimates equal to −∞ are marked with a vertical red tick. The blue
lines indicate the mean relative error estimates obtained with the method by Botev (2017).

(Cao et al., 2022). Specifically, the tile-low-rank approximation requires the matrix Σ to have a 170

low-rank structure, and thus finds its ideal setting in case (ii). On the other hand, when such a
structure is missing, like in cases (i) and (iii), such an approximation may not be feasible and thus
Genz’s method is used instead. Both methods are implemented with extreme efficiency via the
pmvn() function in the R package tlrmvnmvt. Each method is run ten times, using 104 samples
for sampling methods. For the sake of conciseness, we present a subset of the results, which are 175

completely reported in Section S.3 of the Supplementary Material. Specifically, here we focus
on case (i) and case (ii) with 𝜌 = 0.50, when 𝑚 ∈ {16, 256, 512}. These are a class of limited,
although illustrative, examples adapted from Cao et al. (2022).

Figure 1 shows the results for case (i). For varying upper integration limit 𝑢, we plot the
relative differences between the log2 estimates of Φ𝑚(𝑢;Σ) obtained by the competitors and the 180

ones obtained with the proposed method, which in this scenario is used as benchmark due to the
possible underflow of the alternatives. The estimated values are consistent across algorithms for
lower dimensions (𝑚 = 16-128, see also Figure S.3), with estimates from expectation propagation
being almost indistinguishable from Botev’s ones—with the expectation propagation values
falling within the average estimated Botev’s error bands, represented by the blue lines—and 185

showing negligible differences with the other methods. However, a crucial difference is observed
at higher dimensions, where both Botev’s and Genz’s methods exhibit numerical underflow for
tail probabilities, resulting in estimates equal to −∞. In such a case, the only viable options are
Ridgway’s method and expectation propagation, with the latter requiring only a fraction of the
computational time (see Figure S.12), thus representing the preferable option. An analogous trend 190

is observed for case (iii), where underflow occurs even for 𝑚 ≥ 128 (see Figure S.8). Interestingly,
in such cases, when no underflow occurs for Botev’s method, expectation propagation shows a
lower bias than the other asymptotically-exact sampling approaches.
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Fig. 2: Boxplots of the relative differences in the estimates of log2 Φ𝑚(𝑢;Σ) obtained by various
methods are shown as a function of the upper integration limit 𝑢 when Σ is a fixed-structure
correlation matrix (case (ii)) with off-diagonal elements identically equal to 𝜌 = 0.50. All four
methods considered are benchmarked with the ground truth, computed numerically.

Figure 2 displays results when Σ is a correlation matrix with fixed structure (case (ii)) with 𝜌 =

0.5. Given the specific structure of Σ, the ground truth can be easily computed numerically, as it195

boils down to a univariate integral (see Supplementary Material). Interestingly, the tail probability
estimates obtained with the proposed method align with Botev’s, achieving comparable accuracy
at a reduced computational cost (see Figure S.13). At the same time, the tile-low-rank algorithm
(Cao et al., 2021) shows more instability in the computation of tail probabilities, empirically when
the log2 probability goes below −20. On the other hand, the proposed method shows some bias200

in the estimation of probabilities for larger values of 𝑢, in general when the log2 probability goes
above -2.5 (see Figure S.10 for the values of the log2 probabilities). This behaviour shows that
expectation propagation can be the preferable option for tail probabilities, while some corrections
might be useful for larger probabilities. For instance, one could resort to importance sampling
using the approximate posterior as proposal or consider non-symmetric approximations (Pozza205

et al., 2024). Additional results for different 𝜌 values are provided in Figures S.4, S.5, S.6, and S.7.
Notably, as 𝜌 increases, tile-low-rank gains precision and efficiency, while the accuracy of the
proposed method diminishes for large values of 𝑚 and 𝑢, although maintaining great precision in
the computation of tail probabilities, which are usually the most challenging to compute.

The ratios between the running times of the proposed expectation propagation approach and210

each sampling algorithm, for the three considered cases, are reported in Figures S.12, S.13, and
S.14. The proposed method is the only one computing Φ𝑚(𝑢;Σ) in polynomial time O(𝑚3)
without sampling. Genz’s method would instead require a pre-computation cost of O(𝑚3) and
O(𝑚2) for each sample (Cao et al., 2021), with Botev’s method having similar cost but increased
accuracy, while Ridgway’s approach would require an additional O(𝑚4) cost when resampling215

is carried out. The tile-low-rank approach, when feasible thanks to the structure of Σ and imple-
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mented efficiently, has a reduced pre-processing cost of O(𝑚2), thanks to the use of a tile-low-rank
Cholesky factorization, combined with a cost per sample of order O(𝑚3/2). In the experiments,
the proposed expectation propagation implementation is faster than the competitors for moderate
dimensions, with performance comparable to tlrmvnmvt for 𝑚 = 256. The latter exhibits lower 220

running times for larger matrices (𝑚 = 512–1024). Yet, in high dimensions, the tlrmvnmvt and
the TruncatedNormal packages may lead to underflows in the probability estimates, while Ridg-
way’s approach may be computationally impractical, leaving expectation propagation the only
viable option among the considered alternatives, especially when tail probabilities are considered.
Additional studies on the trade-off between computational costs and accuracy are reported in the 225

Supplementary Material. We also provide a link to a GitHub repository for full reproducibility.

Supplementary Material
Supplementary Material available at Biometrika online includes proofs of Proposition 1, the

pseudo-code for the algorithms, and additional simulation results.
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Summary
The Supplementary Material includes proofs of the theoretical results, a self-contained pre-

sentation of expectation propagation for the probit model and additional simulations for the
performance of the methods developed in the article “Multivariate Gaussian cumulative distribu-
tion functions as the marginal likelihood of their dual Bayesian probit models”. 15

S.1. Proof of Proposition 1
Adapting Corollary 3 in Durante (2019), the form of the marginal likelihood for a Bayesian

probit model (2) equals

𝑝(𝑦) = Φ𝑛

(
𝐷𝑋𝜉; 𝐼𝑛 + 𝐷𝑋Ω(𝐷𝑋)⊤

)
, (S.1)

where 𝐷 = diag(2𝑦1 − 1, . . . , 2𝑦𝑛 − 1).
This can also be obtained leveraging on the latent variable interpretation model (2) (Albert & 20

Chib, 1993):

𝑦𝑖 = 1(𝑧𝑖 ≥ 0), 𝑧𝑖 = 𝑥
⊤
𝑖 𝛽 + 𝜖𝑖 , 𝛽 ∼ N𝑝 (𝜉,Ω) , (S.2)

where 𝜖𝑖
𝑖𝑖𝑑∼ N(0, 1) independent of 𝛽. Thus, a priori, marginally 𝑧 = (𝑧1, . . . , 𝑧𝑛)⊤ ∼

N𝑛 (𝑋𝜉, 𝐼𝑛 + 𝑋Ω𝑋⊤). For a given sample 𝑦 = (𝑦1, . . . , 𝑦𝑛), callA𝑦 = A𝑦1 × . . .A𝑦𝑛 the cartesian
product of sets A𝑦𝑖 = {𝜁 ∈ R : (2𝑦𝑖 − 1)𝜁 > 0}, so that

A𝑦𝑖 =

{
(−∞, 0) if 𝑦𝑖 = 0,
(0, +∞) if 𝑦𝑖 = 1.

Thus, taking 𝐷 as above and 𝑧 ∼ N𝑛 (𝑋𝜉, 𝐼𝑛 + 𝑋Ω𝑋⊤), it holds that the marginal likelihood for
model (2) is, coherently with Durante (2019),

𝑝(𝑦) = P
[
𝑧 ∈ A𝑦

]
= P [𝐷𝑧 ≥ 0] = P [𝐷𝑧 − 𝐷𝑋𝜉 ≥ −𝐷𝑋𝜉]

= P [−𝐷𝑧 + 𝐷𝑋𝜉 ≤ 𝐷𝑋𝜉] = Φ𝑛

(
𝐷𝑋𝜉; 𝐼𝑛 + 𝐷𝑋Ω(𝐷𝑋)⊤

)
,

(S.3)

since −𝐷𝑧 + 𝐷𝑋𝜉 ∼ N𝑛 (0, 𝐼𝑛 + 𝐷𝑋Ω(𝐷𝑋)⊤).

C⃝ 2024 Biometrika Trust
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Now, suppose we are interested in computing Φ𝑚 (𝑢; Σ), for a generic positive definite25

covariance matrix Σ ∈ R𝑚×𝑚
+ and an arbitrary point 𝑢 ∈ R𝑚. First, let us define Σ̃ = Σ − 𝜖𝜆𝑚𝐼𝑚

where 𝜖 ∈ (0, 1) and 𝜆𝑚 is the smallest eigenvalue of Σ. By construction, the matrix Σ̃ remains
positive definite: the eigenvalues are obtained by subtracting 𝜖𝜆𝑚 from the eigenvalues of Σ.
Being a symmetric positive-definite 𝑚 × 𝑚 matrix, Σ̃ can be decomposed as Σ̃ = 𝑃Λ̃𝑃⊤, with 𝑃
and Λ̃ 𝑚 × 𝑚 matrices as in Proposition 1, in different possible ways (Petersen et al., 2008). For30

any such factorization of Σ̃, we have Σ = 𝜖𝜆𝑚𝐼𝑚 + 𝑃Λ̃𝑃⊤, leading to

Φ𝑚 (𝑢; Σ) = Φ𝑚

(
𝑢; 𝜖𝜆𝑚𝐼𝑚 + 𝑃Λ̃𝑃⊤)

= Φ𝑚

(√︂
1
𝜖𝜆𝑚

𝑢; 𝐼𝑚 + 𝑃
[

1
𝜖𝜆𝑚

Λ̃

]
𝑃⊤

)
= Φ𝑚

(
𝑃𝑃−1

√︂
1
𝜖𝜆𝑚

𝑢; 𝐼𝑚 + 𝑃
[

1
𝜖𝜆𝑚

Λ̃

]
𝑃⊤

)
.

(S.4)

Comparing (S.4) with (S.1), we can see that the generic Φ𝑚 (𝑢; Σ) coincides with the marginal
likelihood of a dual Bayesian probit model where 𝑛 = 𝑝 = 𝑚 and relevant quantities given by

𝐷𝑋 = 𝑃, Ω =
1
𝜖𝜆𝑚

Λ̃, 𝜉 = 𝑃−1
√︂

1
𝜖𝜆𝑚

𝑢.

By left multiplying the first equality by 𝐷, we get that the working matrix of covariates in the dual
probit must equal 𝑋 = 𝐷𝑃 since 𝐷2 = 𝐼𝑚. We can also notice that in the dual probit model 𝐷 and35

𝑋 are not uniquely identified, as they only need to satisfy the condition 𝐷𝑋 = 𝑃. This translates
into the freedom of choosing 𝐷 (or, equivalently, the working observations 𝑦) in the dual probit
model, and then taking 𝑋 = 𝐷𝑃. For simplicity, we took 𝐷 = 𝐼𝑚. For this specification, we obtain
the results reported in Proposition 1.

S.2. Expectation propagation for the probit model40

We report here the details about the expectation propagation algorithm and its specifica-
tion to Bayesian probit models of the form (2). These derivations can be obtained by spe-
cializing the results in Anceschi et al. (2024) to the probit model, considering a generic prior
mean 𝜉 and covariance matrix Ω for 𝛽. See also Seeger et al. (2007); Seeger (2008); Vehtari
et al. (2020); Zhou et al. (2023) for related topics. This self-contained treatment of the topic45

is reported to clarify the details of the employed algorithm to compute (1) also to readers
unfamiliar with the method. The key idea of expectation propagation (Minka, 2001a,b) is to
approximate the posterior distribution 𝑝(𝛽 | 𝑦) ∝ 𝑝(𝛽)∏𝑛

𝑖=1 𝑝(𝑦𝑖 | 𝛽) of a 𝑝-dimensional pa-
rameter 𝛽 with a density 𝑞ep(𝛽) that has the same factorization 𝑞ep(𝛽) ∝ 𝑞0(𝛽)

∏𝑛
𝑖=1 𝑞𝑖 (𝛽).

To have a treatable global approximation 𝑞ep(𝛽), when 𝛽 is a real-valued vector, the fac-50

tors (also referred to as sites) 𝑞𝑖 (𝛽), 𝑖 = 0, . . . , 𝑛, are usually taken from a Gaussian-like
kernel, that is 𝑞𝑖 (𝛽) = 𝑍−1

𝑖
exp{−0.5𝛽⊤𝑄𝑖𝛽 + 𝛽⊤𝑟𝑖} for 𝑖 = 0, . . . , 𝑛. As a consequence of

this choice the global approximation takes the form 𝑞ep(𝛽) = Ψ(𝑟ep, 𝑄ep)−1 exp{−0.5𝛽⊤𝑄ep𝛽 +
𝛽⊤𝑟ep}, where 𝑟ep =

∑𝑛
𝑖=0 𝑟𝑖 , 𝑄ep =

∑𝑛
𝑖=0𝑄𝑖 and Ψ(𝑟, 𝑄) =

∫
exp {−0.5𝛽⊤𝑄𝛽 + 𝛽⊤𝑟} 𝑑𝛽, mean-

ing logΨ(𝑟, 𝑄) = 0.5{𝑟⊤𝑄−1𝑟 + 𝑝 log(2𝜋) − log |𝑄 |}. Thus, the density of the global approxi-55

mation is a 𝑝-variate Gaussian density with mean 𝜉ep = 𝑄
−1
ep 𝑟ep and variance-covariance matrix

Ωep = 𝑄
−1
ep . Now, let us denote with 𝜙𝑝 (𝑎; 𝐵) the probability density function of a 𝑝-variate

Gaussian with mean 0 and variance-covariance matrix 𝐵, evaluated in 𝑎. Also, we will write
𝜙(𝑎; 𝑏) ≡ 𝜙1(𝑎; 𝑏), 𝜙(𝑎) ≡ 𝜙(𝑎; 1) and equivalently Φ(𝑎) ≡ Φ1(𝑎; 1). When a multivariate
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Gaussian prior 𝑝(𝛽) = 𝜙𝑝 (𝛽 − 𝜉;Ω) is assumed, as for model (2), one can set 𝑞0(𝛽) = 𝑝(𝛽), 60

which means taking 𝑄0 = Ω−1, 𝑟0 = Ω−1𝜉 and 𝑍0 = Ψ(𝑟0, 𝑄0).
The parameters 𝑟𝑖 , 𝑄𝑖 and 𝑍𝑖 for the other sites, 𝑖 = 1, . . . , 𝑛, are instead iteratively refined

via the expectation propagation recursion. In the estimation scheme, such sites play the role
of approximations for the likelihood terms 𝑝(𝑦𝑖 | 𝛽), 𝑖 = 1, . . . , 𝑛, and thus are not density
functions in 𝛽. For this reason, also the term 𝑍𝑖 enters among the parameters to be optimized. 65

See also Anceschi et al. (2024) for additional details about expectation propagation for Bayesian
generalized linear models. At each iteration, until convergence is met, each site 𝑖 = 1, . . . , 𝑛 is
updated according to the following scheme. Keeping all the other sites 𝑞𝑗 (𝛽), 𝑗 ≠ 𝑖, fixed, one
first computes the cavity density 𝑞−𝑖 (𝛽) ∝ 𝑞ep(𝛽)/𝑞𝑖 (𝛽), obtaining

𝑞−𝑖 (𝛽) = 𝜙𝑝 (𝛽 −𝑄−1
−𝑖 𝑟−𝑖;𝑄

−1
−𝑖 ),

where 𝑟−𝑖 =
∑

𝑗≠𝑖 𝑟𝑗 and 𝑄−𝑖 =
∑

𝑗≠𝑖 𝑄𝑗 . Then, one computes the hybrid density ℎ𝑖 (𝛽) = 70

𝑍−1
ℎ𝑖
𝑝(𝑦𝑖 | 𝛽)𝑞−𝑖 (𝛽), with 𝑍ℎ𝑖 =

∫
𝑝(𝑦𝑖 | 𝛽)𝑞−𝑖 (𝛽)𝑑𝛽. Finally, parameters {𝑟𝑖 , 𝑄𝑖 , 𝑍𝑖} of site

𝑞𝑖 (𝛽) are updated so that the resulting moments of order “zero”, one, and two of the updated
global approximation 𝑞new

ep (𝛽) = (𝑍new
ep )−1𝑞new

𝑖
(𝛽)𝑞−𝑖 (𝛽), with 𝑍new

ep =
∫
𝑞−𝑖 (𝛽)𝑞new

𝑖
(𝛽)𝑑𝛽 =

Ψ(𝑟new
ep , 𝑄new

ep )/{Ψ(𝑟−𝑖 , 𝑄−𝑖) · 𝑍new
𝑖

}, match the ones of the hybrid distribution, that is
𝑍new

ep = 𝑍ℎ𝑖(
𝑄−𝑖 +𝑄new

𝑖

)−1 (𝑟−𝑖 + 𝑟new
𝑖

) = 𝜇ℎ𝑖(
𝑄−𝑖 +𝑄new

𝑖

)−1
= Σℎ𝑖 ,

where 𝜇ℎ𝑖 = Eℎ𝑖 (𝛽) [𝛽] and Σℎ𝑖 = varℎ𝑖 (𝛽) [𝛽]. 75

This leads to 
log 𝑍new

𝑖
= logΨ(𝑟new

ep , 𝑄new
ep ) − logΨ(𝑟−𝑖 , 𝑄−𝑖) − log 𝑍ℎ𝑖

𝑟new
𝑖

=
(
𝑄−𝑖 +𝑄new

𝑖

)
𝜇ℎ𝑖 − 𝑟−𝑖

𝑄new
𝑖

= Σ−1
ℎ𝑖

−𝑄−𝑖 .

After the algorithm has converged, the log-marginal likelihood log 𝑝(𝑦) can be approximated as

log𝑚ep(𝑦) = logΨ(𝑟ep, 𝑄ep) − logΨ(𝑟0, 𝑄0) −
𝑛∑︁
𝑖=1

log 𝑍𝑖 . (S.5)

The applicability of this approach is strictly related to the computation of the normalizing constant
𝑍ℎ𝑖 and the hybrid moments 𝜇ℎ𝑖 andΣℎ𝑖 . This depends on the tractability of the hybrid distribution
ℎ𝑖 (𝛽). In the case of the probit model, the hybrid density is the density of a multivariate extended 80

skew-normal distribution sn𝑝 (𝜉𝑖 ,Ω𝑖 , 𝛼𝑖 , 𝜏𝑖) (see Azzalini (2014)), with

𝜉𝑖 = 𝑄
−1
−𝑖 𝑟−𝑖 , Ω𝑖 = 𝑄

−1
−𝑖 , 𝛼𝑖 = (2𝑦𝑖 − 1)𝜔𝑖𝑥𝑖 , 𝜏𝑖 = (2𝑦𝑖 − 1) (1 + 𝑥⊤𝑖 Ω𝑖𝑥𝑖)−1/2𝑥⊤𝑖 𝜉𝑖 ,

where 𝜔𝑖 = [diag (Ω𝑖)]1/2. Hence, all the needed quantities are available in closed form,
having 𝑍ℎ𝑖 = Φ(𝜏𝑖), 𝜇ℎ𝑖 = 𝜉𝑖 + 𝜁1(𝜏𝑖)𝑠𝑖Ω𝑖𝑥𝑖 , and Σℎ𝑖 = Ω𝑖 + 𝜁2(𝜏𝑖)𝑠2

𝑖
(Ω𝑖𝑥𝑖) (Ω𝑖𝑥𝑖)⊤, with 𝑠𝑖 =

(2𝑦𝑖 − 1) (1 + 𝑥⊤
𝑖
Ω𝑖𝑥𝑖)−1/2, 𝜁1(𝑥) = 𝜙(𝑥)/Φ(𝑥) and 𝜁2(𝑥) = −𝜁1(𝑥)2 − 𝑥𝜁1(𝑥). Moreover, it can

be shown that both 𝑟𝑖 and𝑄𝑖 are parameterized by scalar quantities, as 𝑟𝑖 = 𝑚𝑖𝑥𝑖 and𝑄𝑖 = 𝑘𝑖𝑥𝑖𝑥
⊤
𝑖

, 85

for some real quantities 𝑚𝑖 and 𝑘𝑖 , 𝑖 = 1, . . . , 𝑛 (Anceschi et al., 2024).
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Thus, for each site, one has to update only the three scalar quantities {𝑚𝑖 , 𝑘𝑖 , log 𝑍𝑖} (see also
Seeger et al. (2007); Seeger (2008)), for which the following holds



𝑘new
𝑖 = −𝜁2(𝜏𝑖)/

(
1 + 𝑥⊤𝑖 Ω𝑖𝑥𝑖 + 𝜁2(𝜏𝑖)𝑥⊤𝑖 Ω𝑖𝑥𝑖

)
,

𝑚new
𝑖 = 𝜁1(𝜏𝑖)𝑠𝑖 + 𝑘new

𝑖 𝑥⊤𝑖 Ω𝑖𝑟−𝑖 + 𝑘new
𝑖 𝜁1(𝜏𝑖)𝑠𝑖𝑥⊤𝑖 Ω𝑖𝑥𝑖 ,

log 𝑍new
𝑖 =

1
2

[2𝑚new
𝑖
𝑟⊤−𝑖Ω𝑖𝑥𝑖 + (𝑚new

𝑖
)2𝑥⊤

𝑖
Ω𝑖𝑥𝑖 − 𝑘new

𝑖
(𝑟⊤−𝑖Ω𝑖𝑥𝑖)2

1 + 𝑘new
𝑖

𝑥⊤
𝑖
Ω𝑖𝑥𝑖

− log(1 + 𝑘new
𝑖 𝑥⊤𝑖 Ω𝑖𝑥𝑖)

]
− logΦ(𝜏𝑖).

The matrix Ω𝑖 =
(
𝑄ep − 𝑘𝑖𝑥𝑖𝑥⊤𝑖

)−1 needed for the updates can be computed exploiting Wood-
bury’s identity as

Ω𝑖 = Ωep +
𝑘𝑖

1 − 𝑘𝑖𝑥⊤𝑖 Ωep𝑥𝑖
(Ωep𝑥𝑖) (Ωep𝑥𝑖)⊤ ,

where the expectation propagation global covariance matrix Ωep is updated at each iteration
exploiting the moment matching conditions Ωnew

ep = (𝑄−𝑖 +𝑄new
𝑖

)−1 = Σℎ𝑖 . After convergence is90

reached, the approximation of the marginal likelihood is obtained via (S.5) as

log𝑚ep(𝑦) =
1
2
[
𝑟⊤ep𝜉ep − log |𝑄ep | − 𝑟⊤0 𝜉 − log |Ω|

]
−

𝑛∑︁
𝑖=1

log 𝑍𝑖 .

When the prior covarianceΩ is diagonal, as in the considered dual probit models, log |Ω| simply
equals the sum of the logs of the diagonal elements. In addition, since usually 𝑘𝑖 and 𝑚𝑖 , 𝑖 =
1, . . . , 𝑛, are initialized to zero, so that the initial expectation propagation approximation matches
the prior distribution, one can initialize log |𝑄ep | to − log |Ω| and then simply update log |𝑄ep |95

at each iteration exploiting the equality log |𝑄new
ep | = log

��𝑄ep
�� + log

[
1 + (𝑘new

𝑖
− 𝑘𝑖)𝑥⊤𝑖 Ωep𝑥𝑖

]
,

where 𝑘𝑖 and 𝑘new
𝑖

represent values before and after site 𝑖 is updated, respectively.

S.2.1. Two possible implementations for the Bayesian probit model
Performing the updates reported above, one would obtain an implementation for posterior

inference in a probit model (2) having cost O(𝑝2𝑛) per iteration, corresponding to the specification100

of Algorithm 1 in Anceschi et al. (2024) to the case at hand. This is reported in Algorithm 1
below for completeness.
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Algorithm 1. Expectation propagation for probit model (2) - O(𝑝2𝑛) cost per iteration
Initialization:
Ωep = Ω; 𝑟ep = 𝑟0 = Ω−1𝜉; log |𝑄ep | = − log |Ω|;
𝑘𝑖 = 0, 𝑚𝑖 = 0, and log 𝑍𝑖 = 0 for 𝑖 = 1, . . . , 𝑛.
Optimization:
for 𝑡 from 1 until convergence do

for 𝑖 from 1 to 𝑛 do
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cavity distribution
Ω𝑖 = Ωep + 𝑘𝑖/

(
1 − 𝑘𝑖𝑥⊤𝑖 Ωep𝑥𝑖

)
(Ωep𝑥𝑖) (Ωep𝑥𝑖)⊤

𝑟−𝑖 = 𝑟ep − 𝑚𝑖𝑥𝑖
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hybrid distribution
𝑠𝑖 = (2𝑦𝑖 − 1) (1 + 𝑥⊤

𝑖
Ω𝑖𝑥𝑖)−1/2

𝜏𝑖 = 𝑠𝑖𝑥
⊤
𝑖
Ω𝑖𝑟−𝑖

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 𝑖-th site approximation
𝑘new
𝑖

= −𝜁2(𝜏𝑖)/
(
1 + 𝑥⊤

𝑖
Ω𝑖𝑥𝑖 + 𝜁2(𝜏𝑖)𝑥⊤𝑖 Ω𝑖𝑥𝑖

)
; 𝛿𝑘𝑖 = 𝑘

new
𝑖

− 𝑘𝑖; 𝑘𝑖 = 𝑘
new
𝑖

𝑚𝑖 = 𝜁1(𝜏𝑖)𝑠𝑖 + 𝑘𝑖𝑥⊤𝑖 Ω𝑖𝑟−𝑖 + 𝑘𝑖𝜁1(𝜏𝑖)𝑠𝑖𝑥⊤𝑖 Ω𝑖𝑥𝑖

log 𝑍𝑖 =
1
2

[2𝑚𝑖𝑟
⊤
−𝑖Ω𝑖𝑥𝑖 + 𝑚2

𝑖
𝑥⊤
𝑖
Ω𝑖𝑥𝑖 − 𝑘𝑖 (𝑟⊤−𝑖Ω𝑖𝑥𝑖)2

1 + 𝑘𝑖𝑥⊤𝑖 Ω𝑖𝑥𝑖
− log(1 + 𝑘𝑖𝑥⊤𝑖 Ω𝑖𝑥𝑖)

]
− logΦ(𝜏𝑖)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Global approximation
𝑟ep = 𝑟−𝑖 + 𝑚𝑖𝑥𝑖

Ωep = Ω𝑖 + 𝜁2(𝜏𝑖)𝑠2
𝑖
(Ω𝑖𝑥𝑖) (Ω𝑖𝑥𝑖)⊤

log |𝑄ep | = log |𝑄ep | + log[1 + 𝛿𝑘𝑖𝑥⊤𝑖 Ωep𝑥𝑖]

Final computation of quantities of interest:
𝜉ep = Ωep𝑟ep

log𝑚ep(𝑦) =
1
2
[
𝑟⊤ep𝜉ep − log |𝑄ep | − 𝑟⊤0 𝜉 − log |Ω|

]
− ∑𝑛

𝑖=1 log 𝑍𝑖
Output: (𝜉ep,Ωep, log𝑚ep(𝑦))
An alternative implementation is also possible, with cost O(𝑝𝑛2) per iteration. This is faster

when 𝑝 > 𝑛 and generally more efficient when 𝑝 has the same order as 𝑛. If using expectation 105

propagation to compute a Gaussian cumulative distribution function (1), the dual probit model
has 𝑛 = 𝑝 = 𝑚, so both implementations would have O(𝑚3) cost. However, this alternative
implementation is usually more efficient when 𝑝 has the same order of magnitude as 𝑛 and,
for this reason, will be preferred. See also Figure S.2 for reference. We highlight that these
are different implementations of the same method, so the difference is merely computational. 110

Results are indeed the same up to numerical precision. Should more efficient implementations
become available, the conclusions about the accuracy of the method would still be valid. In fact, the
expectation propagation algorithm can be written in terms of the 𝑝-dimensional vectors𝑤𝑖 = Ω𝑖𝑥𝑖
and 𝑣𝑖 = Ωep𝑥𝑖 , 𝑖 = 1, . . . , 𝑛, instead of working with the 𝑝 × 𝑝 matrices Ω𝑖 and Ωep. It holds
𝑤𝑖 = 𝑑𝑖𝑣𝑖 , with 𝑑𝑖 = (1 − 𝑘𝑖𝑥⊤𝑖 𝑣𝑖)−1. Each time a site 𝑖 is updated, the resulting global covariance 115

matrix Ωep changes, and thus all the 𝑣𝑗’s, 𝑗 = 1, . . . , 𝑛 need to be updated according to the rule
𝑣new
𝑗

= 𝑣𝑗 − 𝑐𝑖 (𝑥⊤𝑖 𝑣𝑗)𝑣𝑖 , with 𝑐𝑖 = (𝑘new
𝑖

− 𝑘𝑖)/(1 + (𝑘new
𝑖

− 𝑘𝑖)𝑥⊤𝑖 𝑣𝑖). Following Anceschi et al.
(2024), one can define the 𝑝 × 𝑛 matrix 𝑉 = [𝑣1, 𝑣2, . . . , 𝑣𝑛] = Ωep𝑋

⊤, and update it as

𝑉new = 𝑉 − 𝑐𝑖𝑣𝑖𝑥⊤𝑖 𝑉. (S.6)
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Finally, after convergence, one can recoverΩep asΩep = Ω −𝑉𝐾𝑋Ω, where𝐾 = diag(𝑘1, . . . , 𝑘𝑛).
Combining the above, one obtains the expectation propagation implementation in Algorithm 2120

below, which corresponds to Algorithm 2 in Anceschi et al. (2024), specified to the probit model.
This is the algorithm used in our experiments to compute Φ𝑚(𝑢;Σ) exploiting Proposition 1 and
approximating the marginal likelihood of the dual probit model via expectation propagation.

Algorithm 2. Expectation propagation for probit model (2) - O(𝑝𝑛2) cost per iteration
Initialization:
𝑟ep = 𝑟0 = Ω−1𝜉; 𝑉 = [𝑣1, . . . , 𝑣𝑛] = Ω𝑋⊤; log |𝑄ep | = − log |Ω|;
𝑘𝑖 = 0, 𝑚𝑖 = 0, and log 𝑍𝑖 = 0 for 𝑖 = 1, . . . , 𝑛.
Optimization:
for 𝑡 from 1 until convergence do

for 𝑖 from 1 to 𝑛 do
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cavity distribution
𝑤𝑖 = (1 − 𝑘𝑖𝑥⊤𝑖 𝑣𝑖)−1𝑣𝑖
𝑟−𝑖 = 𝑟ep − 𝑚𝑖𝑥𝑖
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hybrid distribution
𝑠𝑖 = (2𝑦𝑖 − 1) (1 + 𝑥⊤

𝑖
𝑤𝑖)−1/2

𝜏𝑖 = 𝑠𝑖𝑤
⊤
𝑖
𝑟−𝑖

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 𝑖-th site approximation
𝑘new
𝑖

= −𝜁2(𝜏𝑖)/
(
1 + 𝑥⊤

𝑖
𝑤𝑖 + 𝜁2(𝜏𝑖)𝑥⊤𝑖 𝑤𝑖

)
; 𝛿𝑘𝑖 = 𝑘

new
𝑖

− 𝑘𝑖; 𝑘𝑖 = 𝑘
new
𝑖

𝑚𝑖 = 𝜁1(𝜏𝑖)𝑠𝑖 + 𝑘𝑖𝑤⊤
𝑖
𝑟−𝑖 + 𝑘𝑖𝜁1(𝜏𝑖)𝑠𝑖𝑥⊤𝑖 𝑤𝑖

log 𝑍𝑖 =
1
2

[2𝑚𝑖𝑟
⊤
−𝑖𝑤𝑖 + 𝑚2

𝑖
𝑥⊤
𝑖
𝑤𝑖 − 𝑘𝑖 (𝑟⊤−𝑖𝑤𝑖)2

1 + 𝑘𝑖𝑥⊤𝑖 𝑤𝑖

− log(1 + 𝑘𝑖𝑥⊤𝑖 𝑤𝑖)
]
− logΦ(𝜏𝑖)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Global approximation
𝑟ep = 𝑟−𝑖 + 𝑚𝑖𝑥𝑖

𝑉 = 𝑉 − 𝑣𝑖
[
𝛿𝑘𝑖/

(
1 + 𝛿𝑘𝑖𝑥⊤𝑖 𝑣𝑖

) ]
𝑥⊤
𝑖
𝑉

log |𝑄ep | = log |𝑄ep | + log[1 + 𝛿𝑘𝑖𝑥⊤𝑖 𝑣𝑖]

Final computation of quantities of interest:
Ωep = Ω −𝑉𝐾𝑋Ω, with 𝐾 = diag(𝑘1, . . . , 𝑘𝑛)
𝜉ep = Ω𝑟ep −𝑉𝐾𝑋Ω𝑟ep

log𝑚ep(𝑦) =
1
2
[
𝑟⊤ep𝜉ep − log |𝑄ep | − 𝑟⊤0 𝜉 − log |Ω|

]
− ∑𝑛

𝑖=1 log 𝑍𝑖
Output: (𝜉ep,Ωep, log𝑚ep(𝑦))

S.3. Additional Results125

In this section, we first compare in terms of estimation accuracy and computational times
the two expectation propagation Algorithms 1 and 2 presented above using both the Cholesky
factorization and the eigendecomposition for Σ̃, motivating our choice for the use of Algorithm 2
combined with the Cholesky factorization. With reference to both Algorithms 1 and 2, we
adopted the following convergence criterion. For each observation 𝑖 = 1, . . . , 𝑛, we compute130

relative change from the previous values of 𝑘𝑖 , 𝑚𝑖 , and 𝑍𝑖 . Finally, we stop the algorithm if the
maxima of all three relative variations fall below a certain threshold, which we set conservatively
to 0.0001. Then, we report additional figures to complete the exposition of the results discussed
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in Section 4 of the main paper. All code used in the studies is openly available at the GitHub
repository Fradenti/DualProbitCDF. 135

S.3.1. Comparing the expectation propagation algorithms
In Figures S.1 and S.2 we compare the results obtained by the different implementations of

the expectation propagation method presented in Section S.2 across all the different simulations.
The boxplots are stratified according to the correlation matrix structure (panels). As expected,
the different algorithms provide almost identical results in terms of estimated probabilities, as we 140

can appreciate from Figure S.1. That said, it is interesting to note from Figure S.2 that, albeit the
different algorithms share the same theoretical scaling as function of 𝑚, the first version of our
proposals (Algorithm 1) necessitates of considerably longer times to reach convergence, with a
difference that exacerbates as the dimension increases.

Constant Cov. Dense Cov. Fungible Cov.

Chol. Alg. 1 vs
Chol. Alg. 2

Eig. Alg. 1 vs
Chol. Alg. 2

Eig. Alg. 2 vs
Chol. Alg. 2

Chol. Alg. 1 vs
Chol. Alg. 2

Eig. Alg. 1 vs
Chol. Alg. 2

Eig. Alg. 2 vs
Chol. Alg. 2

Chol. Alg. 1 vs
Chol. Alg. 2

Eig. Alg. 1 vs
Chol. Alg. 2

Eig. Alg. 2 vs
Chol. Alg. 2
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Fig. S.1: For both versions of the expectation propagation algorithm and both matrix decomposi-
tions considered, we report boxplots of the relative differences of the log2 probabilities estimates,
using the version based on Cholesky decomposition and Algorithm 2 as the benchmark. These
ratios are computed across all simulations, upper integration limits, and across multiple runs.
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Fig. S.2: For both versions of the expectation propagation algorithm and both matrix decom-
positions considered, we report boxplots of the ratios of computational times, using the version
based on Cholesky decomposition and Algorithm 2 as the benchmark. These ratios are computed
across all simulations, upper integration limits, and multiple runs.

https://github.com/Fradenti/DualProbitCDF
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S.3.2. Complete results of the simulation studies145

The following figures contain the complete results for all the dimensions 𝑚 ∈
{16, 64, 128, 256, 512, 1024} from our extensive simulation studies, deferred to this Supple-
mentary Material for the sake of conciseness. In particular, Figure S.3 shows the results about
case (i), where Σ is a random dense correlation matrix generated according to Davies & Higham
(2000), which is partially mentioned in the main text.150
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Fig. S.3: Boxplots of the relative differences in the estimates of log2 Φ𝑚(𝑢;Σ) obtained by
various methods are shown as a function of the upper integration limit 𝑢, for the case where
Σ is a randomly generated dense correlation matrix following Davies & Higham (2000) (case
(i)). The three sampling-based methods by Botev (2017), Genz (1992), and Ridgway (2016) are
benchmarked against the proposed expectation propagation approximation using the Cholesky
decomposition of the matrix Σ̃ = Σ − 𝜖𝜆𝑚𝐼𝑚. Each boxplot summarizes the results from ten
independent runs. Numerical estimates equal to −∞ are marked with a vertical red tick. The
blue lines indicate the mean relative error estimates obtained with the method by Botev (2017).
Results for the methods of Ridgway (2016) in dimension 𝑚 = 1024 were not computed due to
their high computational cost.

The figure shows the boxplots of relative differences in the estimates of log2 Φ𝑚(𝑢;Σ) obtained
with the proposed method and with competitors across ten repeated evaluations, for varying values
of the upper integration limit 𝑢 = 𝑐1𝑚, where 𝑐 spans 20 equidistant points in [−2, 2] and 1𝑚

denotes the 𝑚-dimensional column vector of ones. Since some of the competing methods may
result in uderflows for small probabilities, the proposed method is used as benchmark, due to155

its higher stability. Thus, for each method 𝑀 , at each value of 𝑢 we represent the boxplot of
(log2 𝑝

(𝑟 )
𝑀

− log2 𝑝𝐸𝑃)/log2 𝑝𝐸𝑃 , 𝑟 = 1 . . . , 10, where 𝑝 (𝑟 )
𝑀

is the probability estimate obtained
with the generic method 𝑀 in replication 𝑟 and 𝑝𝐸𝑃 is the estimate obtained with expectation
propagation, for the specific value of 𝑢 considered. Since, when no underflow issues are present,
probability estimates given by the TruncatedNormal package also come with an estimate 𝜖 of160

the relative error, we represented these estimates graphically, to assess the accuracy of Botev’s
method, and, consequently, of expectation propagation. More specifically, calling 𝑝 (𝑟 ) and 𝜖 (𝑟 )
the values of 𝑝 and 𝜖 obtained with Botev’s method for replication 𝑟 = 1, . . . , 10, we get the lower
and upper bounds 𝑝 (𝑟 )

𝑙
= 𝑝 (𝑟 ) (1 − 𝜖 (𝑟 ) ) and 𝑝 (𝑟 )𝑢 = 𝑝(1 + 𝜖 (𝑟 ) ) for the estimated probability. We
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thus reported the mean (across the 10 replicated experiments) relative discrepancies between 165

such quantities (transformed in log2 scale) and the benchmark, obtaining the blue bands which
may be seen as a measure of the reliability of Botev’s estimates. That is, for each value of 𝑢, the
blue lines represent the average, across the 10 replicated experiments, of the values (log2 𝑝

(𝑟 )
𝑙

−
log2 𝑝𝐸𝑃)/log2 𝑝𝐸𝑃 and (log2 𝑝

(𝑟 )
𝑢 − log2 𝑝𝐸𝑃)/log2 𝑝𝐸𝑃. An analogous procedure is used in

the other figures, with the only difference being that for case (ii) the probability of interest can 170

easily be computed numerically and is thus used as benchmark instead of expectation propagation.
Results for the methods of Ridgway (2016) in dimension 𝑚 = 1024 were not computed due to
their high computational cost.

Then, Figures S.4, S.5, S.6 and S.7 display all the log2 probability estimates under case (ii)
described in the manuscript, where a correlation matrix with fixed-structure is considered. These 175

four figures refer to the cases where the off-diagonal correlations are set to 𝜌 = 0, 𝜌 = 0.25,
𝜌 = 0.50 (already partly mentioned in the text), and 𝜌 = 0.75, respectively. In such a case,
the ground truth can be easily computed numerically, as the multivariate Gaussian cumulative
distribution function reduces to a univariate integral thanks to the equality (see, for instance,
pages 192-193 in Tong, 1990) 180

Φ𝑚(𝑢;Σ) = 1
√

2𝜋

∫ +∞

−∞
exp

{
− 𝑡

2

2

} 𝑚∏
𝑖=1

Φ

(
𝑢𝑖 +

√
𝜌𝑡√︁

1 − 𝜌

)
𝑑𝑡.

Consequently, this quantity is used as benchmark in all the experiments for case (ii). Finally,
Figure S.8 presents the results for case (iii), with random dense correlation matrices generated
by first sampling a matrix 𝐴 with independent standard Gaussian entries and then computing and
standardizing 𝐴⊤𝐴 to obtain a correlation matrix.
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Fig. S.4: Boxplots of the relative differences in the estimates of log2 Φ𝑚(𝑢;Σ) obtained by various
methods are shown as a function of the upper integration limit 𝑢 when Σ is a diagonal correlation
matrix (case (ii)). All four methods considered are benchmarked with the ground truth, computed
numerically. Each boxplot summarizes the results from ten independent runs. Numerical estimates
equal to −∞ are marked with a vertical red tick. The blue lines indicate the mean relative error
estimates obtained with the method by Botev (2017). Results for the methods of Ridgway (2016)
in dimension 𝑚 = 1024 were not computed due to their high computational cost.
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Fig. S.5: Boxplots of the relative differences in the estimates of log2 Φ𝑚(𝑢;Σ) obtained by
various methods are shown as a function of the upper integration limit 𝑢 when Σ is a fixed-
structure correlation matrix (case (ii)) with off-diagonal elements identically equal to 𝜌 = 0.50.
All four methods considered are benchmarked with the ground truth, computed numerically. Each
boxplot summarizes the results from ten independent runs. Numerical estimates equal to −∞ are
marked with a vertical red tick. The blue lines indicate the mean relative error estimates obtained
with the method by Botev (2017). Results for the methods of Ridgway (2016) in dimension
𝑚 = 1024 were not computed due to their high computational cost.

m = 16 m = 64 m = 128 m = 256 m = 512 m = 1024

B
o

te
v

E
P

 C
h

o
l. A

lg
. 2

T
L

R
a

n
k

R
id

g
e
w

a
y

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

u

R
e

la
tiv

e
 d

iff
e

re
n

ce
 in

 lo
g

2
 p

ro
b

a
b

ili
tie

s

Fig. S.6: Boxplots of the relative differences in the estimates of log2 Φ𝑚(𝑢;Σ) obtained by
various methods are shown as a function of the upper integration limit 𝑢 when Σ is a fixed-
structure correlation matrix (case (ii)) with off-diagonal elements identically equal to 𝜌 = 0.50.
Each boxplot summarizes the results from ten independent runs. Numerical estimates equal to
−∞ are marked with a vertical red tick. The blue lines indicate the mean relative error estimates
obtained with the method by Botev (2017). Results for the methods of Ridgway (2016) in
dimension 𝑚 = 1024 were not computed due to their high computational cost.
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Fig. S.7: Boxplots of the relative differences in the estimates of log2 Φ𝑚(𝑢;Σ) obtained by
various methods are shown as a function of the upper integration limit 𝑢 when Σ is a fixed-
structure correlation matrix (case (ii)) with off-diagonal elements identically equal to 𝜌 = 0.75.
Each boxplot summarizes the results from ten independent runs. Numerical estimates equal to
−∞ are marked with a vertical red tick. The blue lines indicate the mean relative error estimates
obtained with the method by Botev (2017). Results for the methods of Ridgway (2016) in
dimension 𝑚 = 1024 were not computed due to their high computational cost.
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Fig. S.8: Boxplots of the relative differences in the estimates of log2 Φ𝑚(𝑢;Σ) obtained by various
methods as a function of the upper integration limit 𝑢 estimated with random dense correlation
matrix (case (iii)). The three sampling-based methods by Botev (2017), Genz (1992), and Ridgway
(2016) are benchmarked against the proposed expectation propagation approximation using the
Cholesky decomposition of the matrix Σ̃ = Σ − 𝜖𝜆𝑚𝐼𝑚. Each boxplot summarizes the results
from ten independent runs. Numerical estimates equal to −∞ are marked with a vertical red tick.
The blue lines indicate the mean relative error estimates obtained with the method by Botev
(2017). Results for the methods of Ridgway (2016) in dimension 𝑚 = 1024 were not computed
due to their high computational cost.
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To provide a complementary perspective, it is informative to examine how the estimated value185

of log2 Φ𝑚(𝑢;Σ) varies as a function of the upper integration limit 𝑢 across the four methods
considered. Figures S.9, S.10, and S.11 report results for cases (i), (ii), and (iii), respectively.
Each figure stratifies the estimates by dimension𝑚 ∈ {16, 64, 128, 256, 512, 1024}. As previously
discussed, the method by Ridgway (2016) was not run due to its high computational cost.

Each dot represents a single simulation run, while the lines connect the average estimates190

at each value of 𝑢. In some instances, the methods of Botev (2017) and Genz (1992) suffer
from numerical underflow at smaller values of 𝑢. These cases are indicated with tick marks for
estimates equal to −∞, and the largest value of 𝑢 at which underflow first occurs is highlighted
with a vertical line, colored according to the corresponding method. Empirically, we observe that
Genz’s and Botev’s methods may experience underflow issues when the log2-probability goes195

below−1000. Ridgway’s approach does not experience these issues, but this comes at an increased
computational cost, which makes it potentially impractical in high-dimensional settings.
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Fig. S.9: Boxplots of the estimates of log2 Φ𝑚(𝑢;Σ) obtained by four methods as a function of
the upper integration limit, where Σ is a random dense correlation matrix generated following
Davies & Higham (2000) (case (i)). The sampling-based methods by Botev (2017) (black), Genz
(1992) (green), and Ridgway (2016) (blue; not computed for 𝑚 = 1024) are compared with the
proposed expectation propagation (EP) approximation using a Cholesky factorization (red). Each
point represents a single run, and lines connect the corresponding averages. Numerical estimates
equal to−∞ (underflows) are indicated with ticks. Vertical lines, colored according to the method,
mark the largest 𝑢 values for which underflow begins to occur in the tail.
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Fig. S.10: Boxplots of the estimates of Φ𝑚(𝑢;Σ), in log2 scale, obtained by various methods as
a function of the upper integration limit estimated with fixed-structure correlation matrix (case
(ii)) with off-diagonal elements identically equal to 𝜌. The sampling-based methods by Botev
(2017) (black), Cao et al. (2021) (green), and Ridgway (2016) (blue; not computed for𝑚 = 1024)
are compared with the proposed expectation propagation (EP) approximation using a Cholesky
factorization (red). Each point represents a single run, and lines connect the corresponding
averages. Numerical estimates equal to −∞ (underflows) are indicated with ticks. Vertical lines,
colored according to the method, mark the largest 𝑢 values for which underflow begins to occur
in the tail.
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Fig. S.11: Boxplots of the estimates of log2 Φ𝑚(𝑢;Σ), obtained by various methods as a function
of the upper integration limit estimated with random dense correlation matrix generated under
case (iii). The sampling-based methods by Botev (2017) (black), Genz (1992) (green), and
Ridgway (2016) (blue; not computed for 𝑚 = 1024) are compared with the proposed expectation
propagation (EP) approximation using a Cholesky factorization (red). Each point represents a
single run, and lines connect the corresponding averages. Numerical estimates equal to −∞
(underflows) are indicated with ticks. Vertical lines, colored according to the method, mark the
largest 𝑢 values for which underflow begins to occur in the tail.



14 A. Fasano and F. Denti

S.3.3. Comparing computational costs
Figure S.12, S.13, and S.14 present the ratio between the running times of expectation

propagation and each algorithm, stratified by dimension and correlation structure when the200

correlation matrices are generated under case (i), (ii), and (iii), respectively. In the experiments,
the expectation propagation approximation is faster than the competitors for moderate dimensions,
with performance comparable to tlrmvnmvt for𝑚 = 256. The latter exhibits lower running times
for larger matrices (𝑚 = 512–1024). Yet, as discussed in the manuscript, the tlrmvnmvt and the
TruncatedNormal packages may lead to probability estimates equaling zero, rendering them205

impractical and leaving expectation propagation to be the only viable option among the considered
competitors, due to the high computational cost of Ridgway’s sequential Monte Carlo approach
in high-dimensional settings. This is particularly relevant when interest is on tail probabilities,
which easily appear in high dimensions. Numerical experiments showed that these underflow
issues were encountered even increasing the number of samples to 105 or higher, thus these210

problems cannot be solved by simply increasing the number of samples, creating an open problem
in the literature, which can be addressed via the proposed expectation propagation approach. In the
experiments, we fixed a conservative convergence tolerance on relative changes of the expectation
propagation parameters, as we focused on showing that expectation propagation can compute
Gaussian cumulative distribution functions with high precision, but lower computational costs215

could be obtained by using a higher tolerance which would decrease the number of expectation
propagation iterations.
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Fig. S.12: Boxplots of the ratios between the computational times obtained by the sampling-based
methods (Botev (2017), Genz (1992), and Ridgway (2016)) and the expectation propagation
algorithm with correlation matrix generated under case (i). Results for the methods of Ridgway
(2016) in dimension 𝑚 = 1024 were not coRatios between the computational times obtained by
Botev’s, Genz’s, and Ridgeway’s method and the expectation propagation algorithm. Results for
the methods of Ridgway (2016) in dimension 𝑚 = 1024 were not computed due to their high
computational cost.mputed due to their high computational cost.
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Fig. S.13: Boxplots of the ratios between the computational times obtained by the sampling-based
methods (Botev (2017), Cao et al. (2021), and Ridgway (2016)) and expectation propagation
algorithm with covariance matrix with correlation matrix generated under case (ii). The boxplots
contain the results for all the values of 𝜌 considered. Results for the methods of Ridgway (2016)
in dimension 𝑚 = 1024 were not computed due to their high computational cost.
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Fig. S.14: Boxplots of the ratios between the computational times obtained by the sampling-based
methods (Botev (2017), Genz (1992), and Ridgway (2016)) and the expectation propagation
algorithm with correlation matrix generated under case (iii). Results for the methods of Ridgway
(2016) in dimension 𝑚 = 1024 were not computed due to their high computational cost.

Lastly, to investigate the trade-off between computational costs and accuracy, we compared the
estimate given by expectation propagation with that of Genz’s, Botev’s and Ridgway’s sampling
methods for varying numbers of samples𝑁 = 5000, 10000, 20000, 50000 in the three considered 220

cases for the form of the matrix Σ (for case (ii), we set 𝜌 = 0.5). We focused on 𝑢 = 0 and𝑚 = 256
to avoid possible underflow or computational issues associated to some sampling approaches. The
results are reported in Figures S.15 and S.16. It emerges that for cases (i) and (iii), expectation
propagation gives virtually the same estimates as Botev’s method with 50, 000 samples, at a
fraction of the computational time, showing an extreme accuracy which makes it even more 225
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Fig. S.15: Boxplots of the estimates of log2 Φ𝑚(𝑢;Σ) obtained by the sampling-based methods:
Botev (2017) (black), Genz (1992) (green), and Ridgway (2016) (blue), across 10 replications. The
horizontal red line represent the value obtained by the deterministic estimation of the proposed
expectation propagation. All methods are evaluated at 𝑢 = 0 with 𝑚 = 256, varying the sample
size 𝑁 . Each panel corresponds to a different scenario for generating the correlation matrix Σ.

precise than the estimates obtained with the other sampling techniques with 50, 000, which are
not immune to biases when small probabilities are considered: see for instance the bias of Genz’s
method for case (iii). On the other hand, case (ii) appears to be slightly more problematic for
expectation propagation, as there seems to be some bias in the estimates, which nevertheless
reduces when tail probabilities are taken into account. This suggests that expectation propagation230

alone might not have the same accuracy on matrices with a low-rank structure, where instead the
tile low-rank method proposed in Cao et al. (2021) finds its ideal setting. Thus, this may motivate
future research about theoretical guarantees for expectation propagation estimates or on even
more accurate methods for the estimation of the marginal likelihood, like, e.g., estimates based
on non-symmetric approximations or a combination of expectation propagation with importance235

sampling, where the Gaussian posterior approximation returned by expectation propagation is
used as importance density in the computation of the marginal likelihood of the dual probit model
of Proposition 1, highlighting the importance and the broad applicability of the main result of
the manuscript. This method would be more demanding from a computational point of view,
requiring an additional sampling step from 𝑚-variate random Gaussians, but would benefit from240

theoretical guarantees of unbiasedness inherited from importance sampling.
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Fig. S.16: Boxplots of the computational time, in seconds, needed by the sampling-based methods:
Botev (2017) (black), Genz (1992) (green), and Ridgway (2016) (blue), across 10 replications.
The horizontal red line indicates the computational time, in seconds, of the proposed expectation
propagation method. All methods are evaluated at 𝑢 = 0 with 𝑚 = 256, varying the sample size
𝑁 . Each panel corresponds to a different scenario for generating the correlation matrix Σ.
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